
Sample-adaptive Augmentation for Point Cloud Recognition
Against Real-world Corruptions

(Supplementary Material)

This document contains additional details and ex-

periments related to the main paper. Specifically, in

Sec. 1, we elaborate on the corruptions settings used in

ScanObjectNN-C (Section 4). In Sec. 2, we provide com-

prehensive details regarding the implementation of Anchor-

Sets Fusion (Section 3.1.3). In Sec. 3, we provide further

insights into the training setup details (Section 5). In Sec. 4,

we present ablation studies on some critical components to

demonstrate the effectiveness of the proposed model design.

Lastly, in Sec. 5, we present full results of ModelNet-C,

ScanObjectNN-C, and ShapeNet-C.

1. Corruption Settings of ScanObjectNN-C

In this section, we provide a detailed description of our

implementation of corruptions and severity level settings,

which is based on the guidelines proposed by ModelNet-

C [12]. To facilitate the discussion, we present a visualiza-

tion of corruption samples in Fig. 1.

Jitter. To introduce the Jitter corruption technique, we ap-

ply a Gaussian noise ε ∈ N (0, σ2) to the coordinates of

each point in our dataset. We experiment with varying

values of the noise parameter σ across five levels, namely

σ ∈ {0.01, 0.02, 0.03, 0.04, 0.05}. By adjusting the noise

level in this way, we aim to assess the impact of different

levels of perturbation on the performance of our model.

Scale. The Scale corruption technique is implemented by

randomly scaling the point clouds along the axes. Specif-

ically, we sample scaling coefficients for each axis inde-

pendently from a uniform distribution U(1/S, S), where S
takes on values from the set S ∈ {1.6, 1.7, 1.8, 1.9, 2.0}
across five levels. After scaling, the point clouds are re-

normalized to a unit sphere to maintain consistency across

all samples.

Rotate. The Rotate corruption technique is implemented

by randomly applying a rotation to the point clouds, which

is described by an Euler angle (α, β, γ). The Euler an-

gles are sampled independently from a uniform distribu-

tion A(−θ, θ), where θ takes on values from the set θ ∈
{π/30, π/15, π/10, π/7.5, π/6} across five levels.

Drop-Global. The Drop-Global technique involves ran-

domly shuffling the order of all points in a point cloud

and then discarding the last N ∗ ρ points, where N rep-

resents the total number of points in the point cloud and

ρ ∈ {0.25, 0.375, 0.5, 0.675, 0.75} is a hyperparameter that

determines the proportion of points to be dropped. We ap-

plied this technique at five different severity levels.

Drop-Local. We describe the Drop-Local corruption tech-

nique, which involves dropping a specified number of points

from randomly selected local parts of a point cloud. The

total number of points to be dropped is determined by

K ∈ {100, 200, 300, 400, 500} for the five levels. To de-

termine the number of local parts to drop, we randomly

sample C local areas from a uniform distribution, where

C ∈ U{1, 2, ..., 8}. The local parts are then assigned a clus-

ter size Ni such that the sum of all cluster sizes is equal to

K, K =
∑C

i=1 Ni. For each local part, we randomly select

a point as the center and drop its Ni-nearest neighbor points

(including itself) from the point cloud.

Add-Global. We present the Add-Global corruption tech-

nique, which involves the uniform sampling of K points

within a unit sphere, and subsequently adding them to the

point cloud. The number of points to be added is determined

by the selection of K, which can take on one of five distinct

values, K ∈ {10, 20, 30, 40, 50}.

Add-Local. In the Add-Local corruption tech-

nique, we introduce K new points, where K ∈
{100, 200, 300, 400, 500} for the five levels. The ap-

proach randomly selects C local centers from the shuffled

point cloud, where C ∈ U{1, 2, ..., 8}. To ensure that

K points are added, we assign Ni points to the i-th local

part, where K =
∑C

i=1 Ni. The coordinates of the neigh-

bouring points are generated from a Normal distribution

N (μi, σ
2
i I), where μi is the i-th local center’s coordinate

and σi ∈ U(0.075, 0.125). Finally, each local part is added

to the point cloud one by one.

2. Implementation of Anchor-Sets Fusion

We assemble the set of locally deformed point clouds

Q′ =
{
q′i ∈ R

N×3|i = 1, ...,M
} ∈ R

M×N×3 into a whole

point cloud P = {pj ∈ R
3|j = 1, ..., N} ∈ R

N×3 by

1

Nadaraya-Watson kernel regression. Specifically, we first

convert point clouds back to origin space by adding an-

chors’ coordinates to their corresponding subsets, obtain-

ing transformed points T = {ti,j ∈ R
3|i = 1, ...,M ; j =

1, ..., N} ∈ R
M×N×3. Given input point cloud P =

{pj ∈ R
3|j = 1, ..., N} ∈ R

N×3 and anchor points

D = {di ∈ R
3|i = 1, ...M} ∈ R

M×3

pj =

∑M
i=1 Kh(||pj − di||2)ti,j
∑M

i=1 Kh(||pj − di||2)
, (1)

where Kh(||pi − dj ||2) denotes the coefficient of trans-

formed points, ||pi− dj ||2 denotes the L2 distance between

j-th point pj and i-th anchor di. Kh(· · ·) is a pre-defined

kernel function with bandwidth h.

Kh(x) = exp(
−x2

2h2
), (2)

Here, we set bandwidth h to 0.5.

3. Training Setup Details
ModelNet-C. AdaptPoint trains a classifier utilizing

stochastic gradient descent (SGD) optimizer with a batch

size of 32 for a total of 300 epochs. The optimizer uti-

lizes a learning rate of 0.1, a momentum value of 0.9, and

weight decay of 2e-4. The CosineAnnealingLR [6] sched-

uler is employed to decrease the learning rate to the mini-

mum value of 0.005. The imitator and discriminator mod-

els are optimized utilizing the Adam optimizer [3] with be-

tas=(0.5, 0.99) and learning rates of 0.0001 and 0.0004, re-

spectively.

ScanObjectNN-C. AdaptPoint trains a classifier model

with a batch size of 32 using the Adam optimizer for a total

of 250 epochs. The optimizer is configured with a learn-

ing rate of 0.002, beta values of (0.9, 0.999), and weight

decay of 0.05. The learning rate is decayed to the mini-

mum value of 1e-4 using the CosineLRScheduler scheme.

Furthermore, the imitator and discriminator models are op-

timized using the Adam optimizer [3]. The imitator opti-

mizer is set to have betas of (0.5, 0.99) and a learning rate

of 0.0001. Likewise, the discriminator optimizer utilizes

the same optimization strategy, but with a learning rate of

0.0004.

ShapeNet-C. In this experiment, PointMAE [8] was uti-

lized as the baseline, and the model is trained for 300 epochs

using the AdamW optimizer. A batch size of 16 is set for

the training process. The optimizer was configured with a

learning rate of 0.0002 and weight decay of 0.05. Addition-

ally, the learning rate was decayed to the minimum value

of 1e-6 by employing the CosineLRScheduler scheme. The

imitator and discriminator models were optimized using the

Adam optimizer [3] with betas of (0.5, 0.99). The imitator

was trained using a learning rate of 0.0001, and the same

optimization strategy was employed to train the discrimina-

tor with a learning rate of 0.0004.

Evaluation metrics. We used evaluation metrics (mCE,

mOA and RmCE) as specified in previous work [12].

Explanation of reported baseline results. We did not em-

ploy multiple training/inference such as voting. Our repro-

duced PointNet++ performance on ScanObjectNN is ele-

vated (86.2% vs. original 77.9%), owing to the integration

of Label Smoothing, AdamW optimizer, and Cosine De-

cay during training. We reproduced PointNeXt using the

same training strategy and achieved 87.3% OA, which is

improved to 88.5% (↑ 1.2%) by using our method.

4. Additional Ablation Studies
Effect of Global Features in Deformation Controller. We

investigated the impact of incorporating global structure

information in Deformation Controller. Our experimental

findings, presented in Tab. 1, demonstrate that the omis-

sion of global information leads to a notable decline in the

AdaptPoint’s performance, with a decrease from 78.3% to

83.3%. Our results indicate that global structure informa-

tion plays a pivotal role in Deformation Controller.
Table 1. Effect of global feature in Deformation Controller

Cross-Anchor Feat Global Feat mCE(↓)

� � 83.3

� � 78.3

Effect of Global Features in Mask Controller In this

study, we conducted additional experiments to investigate

the impact of global structure information in Mask Con-

troller. Our results, presented in Tab. 2, indicate that the

absence of global information leads to a noticeable reduc-

tion in the AdaptPoint’s performance, with a decline from

78.3% to 82.5%. Our findings suggest that global structure

information plays a crucial role in Mask Controller.
Table 2. Effect of global feature in Mask Controller

Cross-Point Feat Global Feat mCE(↓)

� � 82.5

� � 78.3

Combining AdaptPoint with RSMix. The mix strategy

known as RSMix [4] has been shown to significantly en-

hance point cloud model robustness. Our AdaptPoint, on

the other hand, is a type of deformation data augmentation.

Given that these two strategies have demonstrated improved

performance when used in conjunction, we sought to evalu-

ate their combined effectiveness using the results presented

in Tab. 5. However, our experimental findings indicate that

the combination of AdaptPoint and RSMix did not yield

substantial improvements.

Effect of cross interaction in Imitator. This study aims

to explore the significance of cross interaction in Imitator

through further experiments. Tab. 8 presents the results,

which reveal that the exclusion of either interaction mod-

ule results in a decline in network performance. Moreover,

Table 3. Classification results of mOA(%) on ModelNet-C.

Method mOA(↑) Sca Jit Drop-G Drop-L Add-G Add-L Rot

DGCNN [13] 76.4 90.6 68.4 75.2 79.3 70.5 72.5 78.5
PointNet [9] 65.8 88.1 79.7 87.6 77.8 12.1 56.2 59.1
RSCNN [5] 73.9 89.9 63.0 80.0 68.6 79.0 68.3 68.2
SimpleView [1] 75.7 91.8 77.4 69.2 71.9 71.0 76.8 71.7
GDANet [16] 78.9 92.2 73.5 80.3 81.5 74.3 71.5 78.9
CurveNet [14] 77.9 91.8 77.1 82.4 78.8 60.3 72.5 82.6
PAConv [15] 73.0 91.5 53.7 75.2 79.2 68.0 64.3 79.2

PointNet++ [10] 75.1 91.8 62.8 84.1 62.7 81.9 72.7 69.8
+PointWOLF [2] 80.5 92.3 57.3 83.3 73.0 87.3 81.2 89.0
+RSMix [4] 79.9 91.6 47.9 88.0 84.7 92.3 91.0 63.8
+WOLFMix [12] 85.1 91.1 56.7 88.6 87.3 91.2 91.9 89.1
+AdaptPoint 85.9 89.7 67.7 90.9 86.2 91.0 89.0 87.0

PointNeXt [11] 80.5 91.5 59.0 79.0 80.2 92.6 92.4 68.6
+PointWOLF [2] 81.4 91.7 54.2 71.8 78.5 92.2 92.3 89.0
+RSMix [4] 79.7 90.6 49.7 78.5 88.8 93.2 92.7 64.4
+WOLFMix [12] 82.3 92.1 50.7 70.4 88.3 93.0 93.1 88.6
+AdaptPoint 84.7 90.5 63.1 85.0 85.7 91.3 91.1 86.2

RPC [12] 79.5 92.1 71.8 87.8 83.5 72.6 72.2 76.8
+PointWOLF [2] 84.1 91.7 66.1 80.1 78.3 92.0 92.0 88.3
+RSMix [4] 84.2 90.7 68.1 82.1 87.1 92.2 92.0 76.9
+WOLFMix [12] 86.5 90.5 69.4 89.5 89.4 90.2 86.8 89.7
+AdaptPoint 87.7 91.2 75.5 91.0 84.9 91.9 92.0 87.4

Table 4. Classification Results of mOA(%) on ScanObjectNN-C.

Method mOA(↑) Sca Jit Drop-G Drop-L Add-G Add-L Rot

DGCNN [13] 62.8 57.8 45.6 62.2 69.7 54.0 77.3 73.3
+PointWOLF [2] 63.0 62.2 43.1 60.6 70.2 54.9 77.1 72.9
+RSMix [4] 63.8 56.4 47.0 65.5 74.1 51.7 77.6 73.9
+WOLFMix [12] 65.2 61.1 44.1 65.0 74.2 55.7 80.5 75.6
+AdaptPoint 66.1 61.7 41.5 72.7 77.9 57.0 78.8 72.9

PointNet++ [10] 64.1 62.1 40.0 79.2 61.3 56.4 79.5 70.5
+PointWOLF [2] 64.3 64.5 40.9 73.3 52.5 59.6 79.4 79.7
+RSMix [4] 66.0 62.4 45.2 79.0 70.0 56.5 79.8 69.3
+WOLFMix [12] 66.9 66.4 40.7 75.7 64.3 59.4 81.9 79.7
+AdaptPoint 67.9 63.6 38.8 83.3 76.5 57.5 80.4 75.1

RPC [12] 52.2 44.4 41.6 44.9 60.4 47.4 64.0 62.6
+PointWOLF [2] 49.1 43.9 38.4 46.2 59.5 37.8 60.7 57.2
+RSMix [4] 48.0 36.9 48.4 51.9 59.6 29.3 52.6 56.9
+WOLFMix [12] 55.6 54.1 36.1 53.7 67.5 43.2 71.7 63.1
+AdaptPoint 64.1 55.1 45.3 74.7 76.4 50.6 76.0 70.4

PointNeXt [11] 65.5 66.1 41.3 69.5 71.4 56.5 80.1 73.4
+PointWOLF [2] 65.8 65.6 38.6 66.0 72.0 56.3 81.0 81.0
+RSMix [4] 66.6 64.6 41.6 71.6 77.8 55.7 81.2 73.6
+WOLFMix [12] 66.4 65.4 35.1 66.0 76.4 58.9 81.8 81.3
+AdaptPoint 70.0 65.8 44.0 80.8 81.0 58.1 81.3 79.5

Table 5. Effect of combining Rsmix with AdaptPoint

AdaptPoint Rsmix mCE(↓)

� � 78.3
� � 85.9

when both modules are eliminated, there is a substantial de-

terioration in network performance. These findings demon-

strate that cross interaction is a crucial factor in the Adapt-

Point process.

5. Full Results
ModelNet-C. We present complete results for both the

mOA and RmCE metrics in Tab. 3 and Tab. 6, respectively.

ScanObjectNN-C. We show full results for the mOA met-

ric and the RmCE metrics in Tab. 4 and Tab. 7, respectively.

Table 6. Classification results of RmCE(%) on ModelNet-C.

Method RmCE(↓) Sca Jit Drop-GDrop-LAdd-GAdd-L Rot

DGCNN [13] 100.0 100.0100.0 100.0 100.0 100.0 100.0 100.0
PointNet [9] 148.8 130.0 45.5 17.8 97.0 355.7 171.6 224.1
RSCNN [5] 120.1 120.0121.1 70.7 178.2 60.2 119.4 170.9
SimpleView [1] 118.1 105.0 68.2 142.0 165.4 103.6 85.1 157.4
GDANet [16] 86.5 60.0 82.2 75.3 89.5 86.4 109.0 102.8
CurveNet [14] 97.8 100.0 69.0 65.5 112.8 151.6 106.0 79.4
PAConv [15] 121.1 105.0164.9 105.7 108.3 115.8 145.8 102.1

PointNet++ [10] 111.4 60.0 124.8 51.1 227.8 50.2 101.0 164.5
+PointWOLF [2] 77.6 60.0 149.6 58.6 154.1 28.1 61.2 31.9
+RSMix [4] 83.5 80.0 187.2 29.9 63.9 4.1 10.9 208.5
+WOLFMix [12] 51.8 100.0150.4 25.9 43.6 8.6 6.0 28.4
+AdaptPoint 44.6 110.0 100.0 5.7 42.9 4.1 14.4 34.8

PointNeXt [11] 76.6 55.0 138.8 78.2 93.2 0.0 1.0 170.2
+PointWOLF [2] 60.6 25.0 157.0 117.2 103.0 0.0 -0.5 22.7
+RSMix [4] 90.6 130.0179.8 84.5 33.1 0.0 2.5 204.3
+WOLFMix [12] 59.4 45.0 174.8 129.9 35.3 0.0 -0.5 31.2
+AdaptPoint 38.9 40.0 116.5 36.2 42.1 0.0 1.0 36.2

RPC [12] 77.8 45.0 87.6 29.9 71.4 92.3 103.5 114.9
+PointWOLF [2] 45.7 15.0 107.0 68.4 103.0 0.0 0.0 26.2
+RSMix [4] 54.3 75.0 99.6 58.0 38.3 0.0 1.0 108.5
+WOLFMix [12] 51.7 140.0 98.8 21.8 29.3 14.0 32.3 25.5
+AdaptPoint 27.4 35.0 67.8 5.2 52.6 0.0 -0.5 31.9

Table 7. Classification Results of RmCE(%) on ScanObjectNN-C.

Method RmCE(↓) Sca Jit Drop-GDrop-LAdd-GAdd-L Rot

DGCNN [13] 100.0 100.0100.0 100.0 100.0 100.0 100.0 100.0
+PointWOLF [2] 98.4 83.5 105.7 105.6 95.5 96.5 99.8 101.8
+RSMix [4] 98.1 107.3 98.3 88.9 76.9 109.3 105.1 100.7
+WOLFMix [12] 92.3 93.2 107.1 94.2 81.1 99.0 78.5 93.3
+AdaptPoint 74.4 80.8 106.6 49.6 40.4 85.9 65.6 91.7

PointNet++ [10] 97.6 85.9 114.8 29.7 154.4 93.5 79.1 125.9
+PointWOLF [2] 97.7 78.5 113.6 56.0 211.2 84.6 84.6 55.1
+RSMix [4] 95.0 88.7 104.7 35.3 107.4 96.8 88.5 143.8
+WOLFMix [12] 85.8 75.2 116.3 49.7 143.6 88.0 65.5 62.4
+AdaptPoint 76.8 82.2 119.0 14.5 63.1 91.6 74.3 92.8

RPC [12] 102.1 108.2 82.3 126.0 88.8 85.8 126.6 97.3
+PointWOLF [2] 98.6 96.7 80.9 104.8 71.4 104.3 121.1 110.7
+RSMix [4] 82.7 102.5 43.0 58.1 37.6 114.3 153.7 69.9
+WOLFMix [12] 103.5 91.0 108.3 109.7 75.5 114.4 93.5 132.3
+AdaptPoint 82.2 101.5 95.0 37.3 44.1 103.4 88.8 104.9

PointNeXt [11] 93.9 75.8 114.4 75.5 98.6 96.7 84.7 111.2
+PointWOLF [2] 87.2 77.8 121.4 90.6 95.6 97.9 75.6 51.3
+RSMix [4] 90.3 83.9 115.6 69.6 64.0 101.7 81.3 116.3
+WOLFMix [12] 83.4 79.6 130.9 91.6 70.4 90.6 69.2 51.2
+AdaptPoint 74.5 80.8 110.6 32.4 46.5 95.4 84.1 71.4

Table 8. Effect of cross interaction in Imitator

cross-anchor cross-point mCE(↓)

� � 81.4

� � 79.1

� � 78.5

� � 78.3

ShapeNet-C. The complete results of the RmCE metric are

presented in Tab. 9 for ShapeNet-C dataset.

Table 9. Segmentation Results of RmCE (%) on ShapeNet-C.

Method RmCE(↓) Sca Jit Drop-G Drop-L Add-G Add-L Rot

DGCNN [13] 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
PointNet [9] 105.6 35.5 88.0 8.7 115.2 156.6 120.6 214.4
PointNet++ [10] 185.0 68.5 132.9 17.6 786.0 83.0 116.9 90.1
PAConv [15] 84.8 56.0 133.6 76.4 78.9 59.7 94.7 94.0
GDANet [16] 78.5 26.4 111.5 80.6 84.2 53.5 95.2 97.9
PT [18] 93.3 98.1 105.1 72.8 107.7 113.3 105.4 50.7
Point-MLP [7] 81.0 47.4 142.8 21.7 96.1 88.2 110.9 60.1
Point-BERT [17] 89.5 28.3 135.6 21.3 61.9 130.3 136.0 112.8

Point-MAE [8] 70.3 18.0 120.9 22.2 45.9 65.0 108.8 111.4
+AdaptPoint 29.3 23.3 115.6 -9.6 47.4 0.0 0.3 28.6

Figure 1. Visualization of corruption on all levels.

References

[1] Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, and

Jia Deng. Revisiting point cloud shape classification with a

simple and effective baseline. In ICML, pages 3809–3820,

2021. 3

[2] Sihyeon Kim, Sanghyeok Lee, Dasol Hwang, Jaewon Lee,

Seong Jae Hwang, and Hyunwoo J Kim. Point cloud aug-

mentation with weighted local transformations. In ICCV,

pages 548–557, 2021. 3

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 2

[4] Dogyoon Lee, Jaeha Lee, Junhyeop Lee, Hyeongmin Lee,

Minhyeok Lee, Sungmin Woo, and Sangyoun Lee. Regular-

ization strategy for point cloud via rigidly mixed sample. In

CVPR, pages 15900–15909, 2021. 2, 3

[5] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong

Pan. Relation-shape convolutional neural network for point

cloud analysis. In CVPR, 2019. 3

[6] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-

tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 2

[7] Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Re-

thinking network design and local geometry in point cloud:

A simple residual mlp framework. In ICLR, 2022. 4

[8] Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu,

Yonghong Tian, and Li Yuan. Masked autoencoders for point

cloud self-supervised learning. In ECCV, pages 604–621.

Springer, 2022. 2, 4

[9] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In CVPR, 2017. 3, 4

[10] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In NIPS, 2017. 3, 4

[11] Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai,

Hasan Abed Al Kader Hammoud, Mohamed Elhoseiny, and

Bernard Ghanem. Pointnext: Revisiting pointnet++ with im-

proved training and scaling strategies. In NIPS. 3

[12] Jiawei Ren, Liang Pan, and Ziwei Liu. Benchmarking and

analyzing point cloud classification under corruptions. arXiv
preprint arXiv:2202.03377, 2022. 1, 2, 3

[13] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,

Michael M Bronstein, and Justin M Solomon. Dynamic

graph cnn for learning on point clouds. TOG, 38(5):1–12,

2019. 3, 4

[14] Tiange Xiang, Chaoyi Zhang, Yang Song, Jianhui Yu, and

Weidong Cai. Walk in the cloud: Learning curves for point

clouds shape analysis. In ICCV, 2021. 3

[15] Mutian Xu, Runyu Ding, Hengshuang Zhao, and Xiaojuan

Qi. Paconv: Position adaptive convolution with dynamic ker-

nel assembling on point clouds. In CVPR, 2021. 3, 4

[16] Mutian Xu, Junhao Zhang, Zhipeng Zhou, Mingye Xu, Xi-

aojuan Qi, and Yu Qiao. Learning geometry-disentangled

representation for complementary understanding of 3d ob-

ject point cloud. In AAAI, volume 35, pages 3056–3064,

2021. 3, 4

[17] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie

Zhou, and Jiwen Lu. Point-bert: Pre-training 3d point cloud

transformers with masked point modeling. In CVPR, pages

19313–19322, 2022. 4

[18] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and

Vladlen Koltun. Point transformer. In ICCV, 2021. 4

