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We first describe the implementation details of our ex-
periments in Sec. A, including pre-training objectives and
details of REVERIE experiments. In Sec. B, we pro-
vide additional experiments about the effects of visual en-
coders, model initialization, and adding depth features. We
then discuss the impact of ScaleVLN on different VLN
agents and on learning the long-horizon VLN task (R4R).
Leaderboard results of R2R and object grounding results
for REVERIE are also included. Sec. C and Sec. D visual-
ize our navigability graphs and the recovered images from
Co-Modulated GAN [18].

A. Implementation Details (§41)
A.1. Pre-Training Objectives (§4.1)

We mainly employ three proxy tasks, MLM, MRM, and
SAP, for pre-training the agent. Here we describe these
proxy tasks in detail. The inputs for these tasks are in-
struction W and demonstration path P . During training,
we randomly sample one task for each iteration with equal
probability.

Masked Language Modeling (MLM) involves predict-
ing masked words based on textual context and the full tra-
jectory. A special [mask] token is used to randomly mask
out 15% of the tokens in W . We predict the masked word
distribution ppwi|Wzi,Pq “ fMLMpx1

iq through a two-layer
fully-connected network, where Wzi is the masked instruc-
tion and x1

i is the output embedding of the masked word wi.
The objective is to minimize the negative log-likelihood of
predicting the original words: LMLM “ ´log ppwi|Wzi,Pq.

Masked Region Modeling (MRM) is to predict labels
for masked regions in history observations based on instruc-
tions and neighboring regions. To achieve this, we ran-
domly remove view images in P with a 15% probability.

1Link to Section 4 in Main Paper.

For view images, the target labels are determined by an im-
age classification model [6] pre-trained on ImageNet. To
predict semantic labels for each masked visual token, we
use a two-layer fully-connected network. The objective is
to minimize the KL-divergence between the predicted and
target probability distribution.

Single Action Prediction (SAP) aims to predict the next
action based on the instruction and the given path. Follow-
ing [5], we predict the probability for each candidate action
in the action space via a two-layer fully-connected network.
The objective is to minimize the negative log probability of
the target view action LSAP “ ´log ptpa

˚
t |W,Pătq.

A.2. Implementation Details of REVERIE (§4.1)

REVERIE data contains trajectories that lead to target
objects specified by high-level instructions. Following Au-
toVLN [4], for every visible object at a viewpoint, we sam-
ple paths with an edge length between 4 and 9 that end at the
viewpoint. We filter out objects that are more than 3 meters
away from the central of the viewpoint, resulting in 518,233
paths from HM3D, and 311,976 paths from the Gibson en-
vironments. To generate instructions in REVERIE-style,
we modify the GPT-2 architecture used in AutoVLN [4]
by only encoding the target object in the final viewpoint
as the prompt to generate the instructions. Our large-scale
data augmentation paradigm creates 830,209 instruction-
trajectory pairs for training. This size is ˆ38 larger than
the original REVERIE dataset, and ˆ3.81 larger than the
augmented dataset in AutoVLN [4].

We follow DUET and SIA [13] to pre-train the model
with an additional Object Grounding (OG) task, which re-
quires selecting a target from object candidates based on
high-level instruction and observations along the path. We
use CLIP ViT-H/14 [14] to extract the image features, and
ViT-B/16 [6] pre-trained on ImageNet to extract the object
features. We pre-train DUET for 100k iterations with a
batch size of 128 and a learning rate of 5 ˆ 10´5 on both
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HM3D and Gibson environments. We compare three model
checkpoints at 30k, 40k, and 50k and pick the one with the
highest fine-tuning performance. Then we fine-tune DUET
for 150k iterations, with batch size 32 and learning rate
2 ˆ 10´5 on a single NVIDIA A100 GPU.

B. Additional Experiments (§4)
Here we provide additional experiments to investigate

the effect of visual encoder, model initialization, and depth
features. We also experiment with different model archi-
tectures (i.e., HAMT [3]) on R2R dataset, and show object
grounding results for the REVERIE task.

B.1. Effect of Visual Encoders (§4.2)

We study the effect of visual encoders in Table 1. Here
we adopt CLIP’s ViT backbone with different model sizes
and input patches (i.e., Base/16, Large/14, and Huge/14).
We can see that the vision encoder has a major influence on
SPL, suggesting the agent can make fewer wrong steps and
is capable of efficient navigation.

Visual Encoders R2R Val-Seen R2R Val-Unseen
TL NEÓ SRÒ SPLÒ TL NEÓ SRÒ SPLÒ

CLIP-ViT-B/16 12.41 2.02 80.51 74.88 13.16 2.53 78.08 68.31
CLIP-ViT-L/14 12.62 2.16 80.04 74.06 13.13 2.50 78.08 68.97
CLIP-ViT-H/14 12.53 2.15 81.19 76.83 12.61 2.49 78.20 69.71

Table 1: Effect of visual encoders.

B.2. Effect of Initialization (§4.2)

Table 2 presents the performance of initializing the
navigation agent with different pre-trained models in pre-
training. We discovered that utilizing BERT to initialize
the language encoder does not enhance downstream perfor-
mance, and even harms the performance on the validation
unseen set. We attribute this to the vast domain gap between
uni-modal BERT’s language representations and CLIP’s vi-
sual representation. Results could be improved by initializ-
ing the model with LXMERT’s language encoder [15], and
even more by utilizing both the language encoder and cross-
modal encoder from LXMERT, indicating that incorporat-
ing pre-trained vision-and-language models could benefit
agent performance.

B.3. Effect of Depth Modality (§4.2)

We also explored leveraging depth information to im-
prove visual representations as described in Table 3. In
line with previous methods such as [12, 11, 8, 1], we di-
rectly concatenate the depth features from DDPPO [17] (a
ResNet backbone pre-trained on PointGoal navigation with
depth inputs) and the RGB features (from CLIP ViT-B/16)
to create the visual representations. Our findings indicate

Language Encoder
Initialization

R2R Val-Seen R2R Val-Unseen
TL NEÓ SRÒ SPLÒ TL NEÓ SRÒ SPLÒ

Random 12.87 2.29 78.75 72.61 12.69 2.72 75.65 67.00
BERT 12.43 2.29 79.04 73.72 12.95 2.76 75.01 66.57
LXMERT (lang.) 11.73 2.07 80.22 75.65 13.17 2.67 75.86 67.36
LXMERT (lang.+cross.) 12.63 2.27 79.24 73.34 12.83 2.62 76.59 67.74

Table 2: Effect of different initialization, where LXMERT
(lang.) means only initialize the language encoder with
LXMERT, and LXMERT (lang.+cross.) means initialize
both the langauge encoder and cross modal encoder with
LXMERT.

that when not using HM3D as the augmented environment,
the agent’s SR is significantly better if learning from the
additional depth input. However, this conclusion changes
when HM3D environments are involved: the agent’s SR
with RGBD was slightly lower than with RGB-only. We
suspect that as the data is scaled up with more visual obser-
vations and language instructions, the agent may not require
additional depth information to assist decision-making.

HM3D Aug Sensor R2R Val-Seen R2R Val-Unseen
TL NEÓ SRÒ SPLÒ TL NEÓ SRÒ SPLÒ

ˆ
RGB 13.28 2.51 76.89 69.71 13.53 3.06 72.92 62.82

RGBD 14.16 2.54 77.18 69.76 15.14 3.02 74.12 62.54

✓
RGB 12.63 2.27 79.24 73.34 12.83 2.62 76.59 67.74

RGBD 11.24 2.12 79.73 75.45 12.93 2.63 76.46 68.52

Table 3: Effect of adding depth modality.

B.4. ScaleVLN with Different VLN Models (§4.2)

To evaluate the generalization ability of our ScaleVLN
dataset, we also apply the augmented data to train differ-
ent VLN agents, including Seq2Seq [2], EnvDrop [16], and
HAMT [3]. The HAMT model is pre-trained and fine-
tuned with the same data and configurations as we pre-
trained the DUET model, while we follow similar config-
urations of Seq2Seq and Envdrop to the original papers.
All three agents are trained with the CLIP ViT-B-16 fea-
ture. The results are shown in Table 4. Compared to using
only PREVALENT [7] for augmentation, All three mod-
els significantly benefit from incorporating the ScaleVLN
dataset, with 12.2%, 3.8%, 5.5% absolute increase in SR for
Seq2Seq, EnvDrop, and HAMT, respectively. This shows
that ScaleVLN strengthens models’ generalization ability.
Note that Seq2Seq and Envdrop perform better on Val-Seen
when using PREVALENT, mainly caused by overfitting the
training environments.

B.5. ScaleVLN for Long-Horizon VLN (§4.2)

We evaluate the impact of our dataset on a long-horizon
VLN dataset, R4R [10]. R4R extends the R2R dataset by
concatenating two adjacent trajectories in R2R, resulting in

2



Model Pre-Train Data Fine-Tune Data R2R Val-Seen R2R Val-Unseen
NEÓ SRÒ SPLÒ NEÓ SRÒ SPLÒ

Seq2Seq [2] - R2R, PREV 3.89 58.18 38.49 6.32 37.34 23.21
- R2R, ScaleVLN 4.78 49.85 36.32 5.20 47.51 34.81

Envdrop [16] - R2R, PREV 3.65 66.12 61.72 4.41 59.22 52.35
- R2R, ScaleVLN 3.70 65.23 59.06 3.99 63.01 54.93

HAMT [3]
R2R, PREV R2R, PREV 2.58 74.93 71.52 3.69 64.90 60.11

R2R, PREV, ScaleVLN R2R 2.15 79.53 76.64 3.43 67.56 62.32
R2R, PREV, ScaleVLN R2R, ScaleVLN 2.43 76.40 73.30 3.07 70.46 65.12

Table 4: Influence of ScaleVLN on different VLN models.

longer navigation trajectories not biased by the shortest path
prior. We directly fine-tune our pre-trained HAMT mod-
els from Table 4 on R4R. Compared to pre-training with
only R2R and PREVALENT, adding our ScaleVLN dataset
in the pre-training stage leads to a consistent gain, yield-
ing +2.7% SR, +1.5% nDTW and +2.7% SDTW [9]. As
suggested by the large improvement in nDTW between the
ground-truth path and the executed path, our ScaleVLN data
not only facilitate the model to reach the target but also fol-
low the path described by the given instruction.

Pre-Train Data Fine-Tune Data R4R Val-Unseen
NEÓ SRÒ CLSÓ NDTWÒ SDTWÒ

R2R, PREV R4R 6.19 41.52 57.89 51.21 30.00
R2R, PREV, ScaleVLN R4R 6.09 44.20 59.55 52.77 32.73

Table 5: Effect of ScaleVLN on learning R4R.

B.6. Leaderboard Results of R2R (§4.4)

We report the top seven submissions on the test-unseen
leaderboard of R2R2 (Table 6). When ranking with suc-
cess rate, we can see that (a) most methods have extremely
low SPL (1%) due to using beam search to find the optimal
paths. Even so, our single-run result (EarlyToBed) outper-
forms them by a large margin. When ranking with SPL (b),
some methods pre-explored the test environments but their
results are still much worse than ours. Apart from human
followers, we are currently ranked first on the leaderboard.

Team NEÓ SRÒ SPLÒ

human 1.61 86 76
EarlyToBed (ours) 2.27 80 70
LILY˝ 2.54 78 1
Airbert˝ 2.50 78 1
Shortest-Path-Prior˝ 3.55 74 1
UU_77 3.00 74 63
TAIIC˝ 2.99 74 1

(a) Top 7 in SR.

Team NEÓ SRÒ SPLÒ

human 1.61 86 76
EarlyToBed (ours) 2.27 80 70
TAIICX: 3.00 73 69
Active Exploration: 3.30 70 68
sponge 3.26 71 67
Auxiliary Reasoning: 3.96 68 65
SE-Mixed 3.52 70 65

(b) Top 7 in SPL.

Table 6: R2R leaderboard results (28.JUL.2023). ˝: Beam
search. :: Pre-exploration.

B.7. REVERIE Object Grounding Result (§4.4)

We report the success rate of remote object grounding
(RGS) and its path length-weighted result (RGSPL). As

2R2R test server: https://eval.ai/web/challenges/
challenge-page/97/leaderboard/270.

shown in Table 7, ScaleVLN achieves state-of-the-art per-
formance on object grounding task on the test leaderboard,
comparable to the previous best method AutoVLN [4].

Models REVERIE Val-Unseen REVERIE Test-Unseen
SRÒ SPLÒ RGSÒ RGSPLÒ SRÒ SPLÒ RGSÒ RGSPLÒ

SIA [13] 31.53 16.28 22.41 11.56 30.80 14.85 19.02 9.20
HAMT [3] 32.95 30.20 18.92 17.28 30.40 26.67 14.88 13.08
DUET [5] 46.98 33.73 32.15 23.03 52.51 36.06 31.88 22.06
AutoVLN [4] 55.89 40.85 36.58 26.76 55.17 38.88 32.23 22.68
DUET+ScaleVLN(ours) 56.97 41.84 35.76 26.05 56.13 39.52 32.53 22.78

Table 7: Object grounding performance on REVERIE.

C. Comparison of Navigability Graphs (§3.2)
We visualize the navigability graphs produced by Au-

toVLN [4] and our method for several HM3D environments
in Figure 1. We can see that our graphs are denser, covering
more regions, have viewpoints away from obstacles, and are
fully traversable in open space.

D. Recover High Quality Images (§3.2)
As introduced in Main Paper §3.2, we apply the Co-

Modulated GAN [18] to recover the corrupted images ren-
dered from the HM3D and Gibson environments. Specifi-
cally, we first render a panorama of shape 512ˆ1024 from
the 3D mesh at each viewpoint. Then, we crop four im-
ages of shape 512ˆ512 centered at 0˝, 90˝, 180˝ and 270˝

of the panorama (with overlapping), and recover them sep-
arately. Note that, in VLN, the panoramic observation at
a viewpoint is represented by 36 single-view images at 12
viewing angles and three elevations [2]. We directly extract
their corresponding regions from the four recovered images
to obtain these single-view images for pre-training an agent.

Table 8 visualizes the difference between the rendered
images and our recovered images. First, we can see that
our method can recover missing regions, including outdoor
scenes such as sky and trees (Example 1 & 4) and indoor
scenes such as floor and walls (Example 6). Besides, the re-
covered images usually have less blurry or distorted areas,
and the object boundaries are much clearer and sharper. For
instance, the ceiling light in Example 2, the chairs in Exam-
ple 3, and the door frames in Example 5. Even for the highly
corrupted images from Gibson (Examples 4–6), we can see
that the method can still recover the scene to a reasonable
quality.
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AutoVLN Graphs Our Graphs

Figure 1: Comparison of navigability graphs between AutoVLN [4] and our ScaleVLN.
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Examples Environments Rendered Recovered

1 HM3D

2 HM3D

3 HM3D

4 Gibson

5 Gibson

6 Gibson

Table 8: Qualitative examples of our recovered images from HM3D and Gibson environments. The vertical line at the middle
of panorama is caused by directly sticking two independently recovered images at 0˝ and 180˝, which will not appear in the
resulting augmented data, as explained in Appendix §D.
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