
Supplementary Material for SpaceEvo

1. Experiment
1.1. Experiment details

Supernet Training and QAT. To train our quantized-
for-all supernet, we perform two-stage training: (i) super-
net pretraining without quantizers; and (ii) QAT on the pre-
trained supernet.

(i) supernet pretraining without quantizers. We use the
sandwich rule and inplace distillation in BigNAS. Our train-
ing hyperparameters setting follows AlphaNet. Specifically,
we use SGD with a cosine learning rate decay. We train our
supernet for 360 epochs on 8 Tesla Nvidia V100 GPUs. The
mini-batch size is 128 per GPU. The initial learning rate is
set as 0.1 and is linearly scaled up for every 256 training
samples. We use momentum of 0.9, weight decay of 1e-5,
dropout of 0.2 after the global average pooling layer. We
use AutoAugment [1] for data augmentation and set label
smoothing coefficient to 0.1.

(ii) QAT on the pretrained supernet. This step starts from
a full-precision pretrained supernet. We load checkpoints
from step (i) and perform LSQ+ for supernet quantization.
The training receipt follows step (i) except we use a smaller
learning rate of 0.01 and train the supernet for 50 epochs.

Quantization-aware NAS baselines. In our paper, we
focus on INT8 quantization because it has been widely sup-
ported on real-world devices. Since existing quantization-
aware NAS works focus on searching mixed-precision mod-
els, we would like not to directly compare our method with
mixed-precision NAS works. We select the two state-of-
the-art methods of APQ and OQAT and make some modifi-
cations based on their original settings.

APQ originally searches the model architecture and its
layer-wise mixed-precision of {4, 8} bits. It manages an
accuracy predictor that can predict the accuracy of a mixed-
precision quantized model. To compare with APQ, we con-
strain each layer can only search 8bit. For fair comparison,
we add our INT8 quantized latency predictor nn-Meter dur-
ing the model search process. After the search finishes, we
follow APQ to perform finetuning of 30 epochs.

OQAT also trains a quantized-for-all supernet. However,
it supports 4bit and 2 bit. To compare with OQAT, we sim-
ply modify its source code to quantize 8bit and re-do the
supernet QAT process. Same with us, the supernet QAT is
trained for 50 epochs.

1.2. Additional results

SpaceEvo under larger latency constraints for In-
tel VNNI. We provide additional results of search under
larger latency constraints of {10, 15, 20, 25, 30}ms. The
searched space structure is shown in Table 15. We re-
port the best searched quantized models and compare with
SpaceEvo@VNNI in Table 1. Under larger latency con-
straints, the searched space SpaceEvo@VNNI-large pro-
duces better large models (≥15 ms).

Search Space Best searched models
smallest 8ms 10ms15ms20ms25ms28ms

SpaceEvo@VNNI 74.7 (4.4ms) 76.7 77.4 78.7 79.5 80.0 80.1
SpaceEvo@VNNI-large 76.2 (6.7ms) 76.5 77.1 78.9 79.7 80.1 80.3
Table 1. SpaceEvo@VNNI-large: searched space under con-
straint of {10, 15, 20, 25, 30}ms. We report the best searched
quantized model accuracy and latency.

(b) Results on the Google Pixel 6 with TFLite
Model Acc% Pixel4 Latency Acc%FLOPsINT8 INT8 speedup∗ FP32

MobileNetV3Small 66.3 3.7 ms 1.4× 67.4 56M
OFA-pixel6 73.9 5.1 ms 1.9× 74.5 165M

SEQnet@pixel6-A0 74.4 4.0 ms 2.2× 74.5 112M
MobileNetV2 71.4 9.5 ms 1.9× 72.0 300M

ProxylessNAS-R 74.6 9.9 ms 2.0× 74.6 320M
MobileNetV3Large 74.5 8.9 ms 1.6× 75.2 219M

OFA (#25) 75.6 8.0 ms 1.9× 76.4 230M
OFA-pixel6 76.2 10.1 ms 2.1× 76.7 337M

AttentiveNAS-A0 76.1 8.7 ms 2.2× 77.3 203M
SEQnet@pixel6-A1 77.6 8.2 ms 2.4× 77.7 274M
AttentiveNAS-A1 77.2 12.1 ms 2.2× 78.4 279M
AttentiveNAS-A2 77.5 13.0 ms 2.2× 78.8 317M

SEQnet@pixel6-A2 78.3 11.2 ms 2.5× 78.4 412M
FBNetV2-L1 75.8 14.0 ms 1.7× 77.2 325M
OFA-pixel6 76.7 14.8 ms 1.9× 77.2 403M
FBNetV3-A 78.2 16.2 ms 1.7× 79.1 357M

SEQnet@pixel6-A3 78.7 14.6 ms 2.5× 78.8 533M
EfficientNet-B0 76.7 22.2 ms 1.7× 77.3 390M

SEQnet@pixel6-A4 79.6 19.5 ms 2.4× 79.7 676M
Table 2. ImageNet results compared with SOTA quantized models
on Pixel 6. ∗: latency compared to FP32 inference.

Pixel 6 results. We provide searched results on a new
device. Specifically, we select Google Pixel 6 phone as
our test device. We build INT8 quantized latency predictor
with nn-Meter for Pixel 6. Table 2 compares the searched
quantized models performance with existing state-of-the-art
efficient models and best-searched models from OFA Mo-
bileNetV3 search space (i.e., OFA-pixel6 in the Table). As
we can see from Table 2, our searched space delivers sig-

nificant better INT8 quantized models with higher accuracy
and lower latency on Pixel 6 compared to those from OFA
MobileNetV3 search space and existing state-of-the-art ef-
ficient models. For instance, SpaceEvo@pixel6-A0 runs
2.2× faster than MobileNetV3-Large with a same-level ac-
curacy. SpaceEvo@pixel6-A4 achieves 79.6% quantized
accuracy on ImageNet with only 19.5ms, which is 2.7ms
faster than EfficientNet-B0 with 2.9% higher accuracy. The
searched quantized models achieve ∼2.4× latency speedup
compared to FP32 inference, suggesting a better utilization
of on-device INT8 quantization.

2. Block-wise quantization
NSR Loss. For a sampled model block m in the ith stage

of a search space, it receives the output of the (i − 1)th

teacher block as the input and is optimized to predict the
output of the ith teacher block with NSR (per-channel
noise-to-signal-power ratio) loss:

L(E(m)
i
, Yi) =

1

C

C∑
c=0

∥Yi,c − f(Yi−1;E(m)
i
)c∥2

σ2
i,c

(1)

Where E(m)
i is a sampled block in elastic stage Ei, it take

the (i− 1)th teacher block’s output feature map Yi−1 as the
input. Yi is the target output feature map of the ith block of
the teacher model, f(Yi−1;E(m)

i
) maps the output feature

map of the sampled block. C is the number of channels in
a feature map and σ2

i,c is the variance of Yi,c.
Training Hyperparameters. All candidate elastic

stages are trained in a parallel way. Specifically, each elas-
tic stage is trained for 6 epochs on 4 V100 GPUs. The first
5 epochs are full-precision training. We use 0.005 as the
initial learning rate for Stage 1 and Stage 6, and 0.01 for
all the other Stages. We apply a cosine learning rate sched-
ule [3], a batch size of 256, the Adam [2] optimizer. Af-
ter the full-precision training finishes, we conduct 1 epoch
INT8 quantization-aware training with LSQ+. We use a
much smaller learning rate of 0.0025 for quantization.

3. Device and Latency Prediction

Name Framework Processor Measured Hz Precision

Intel VNNI Onnxruntime v1.10 Intel (R) Xeon(R)
Silver 4210 CPU 2GHz FP32/INT8

Pixel 4 TFLite v2.7 CortexA76 CPU 2.42GHz FP32/INT8
Table 3. Our measured edge devices.

Device details and latency measurement. Table 3 lists out
the detailed inference engine and hardware for our two mea-
sured devices. We select Intel VNNI and Pixel 4 CPU be-
cause they support both FP32 and INT8 inference. Specif-
ically, we select TFLite and onnxruntime as the inference

Device RMSE ±5% accuracy ±10% accuracy
Intel VNNI 1.5ms 79.8% 92.5%

Pixel4 1.3ms 89.6% 100%
Table 4. INT8 quantized latency prediction performance of nn-
Meter. We report the ±5% and ±10% accuracy, that are the per-
centage of models with predicted latency within the corresponding
error bound relative to the measured latency

Kernel
size

Intel VNNI Pixel4
Conv DWConv Conv DWConv

1 3.5× 2.7× 2.6× 0.9×
3 3.6× 1.4× 4.0× 2.8×
5 3.8× 1.1× 3.9× 1.1×
7 4.0× 0.8× 3.8× 1.1×

Table 5. INT8 quantization speedup on two devices. Kernel size
impacts the speedup for DWConv. Configuration: H=W=56,
Cin=Cout=96.

engines for Pixel 4 mobile CPU and Intel CPU, respectively,
because they are well-known high-performance engines for
edge AI inference. For latency measurement, we follow the
practices in [6, 4, 5]. We always measure the inference
latency of a given model (either FP32 or INT8 quantized
model) on a single CPU core with fixed frequency. The in-
ference batch size is 1. The reported latency in the paper is
the arithmetic mean of 50 runs after 10 warmup runs. The
95% confidence interval is within 2%.

Latency prediction of quantized models. We now illus-
trate the details of building quantized latency predictors.
Following the original nn-Meter paper, the latency of a
given model is the sum of all kernels’ predicted latency.
Then the procedure contains two main steps: (i) detect ker-
nels in a model, and (ii) build latency predictors for these
kernels. For step (i), we perform the fusion rule detection
in nn-Meter and detects 17 kernels (e.g., Conv-bn-relu and
DWConv-bn-relu6). For step (ii), we run the adaptive data
sampler to collect training data for each kernel and train a
randomforest regressor as the kernel-level latency predic-
tor. Each training data sample is a pair of (configurations of
a kernel, the inference latency). Taking Conv-bn-relu kernel
as an example, we sample different kernel sizes, strides, in-
put/output channel numbers and input resolution for Conv-
bn-relu kernel, then we measure their INT8 quantized la-
tency on the target device.

The kernel-level latency predictors training and con-
struction are conduct offline. During the evolutionary
search, we use them to predict the INT8 quantized latency
for arbitrary model. Table 4 lists out the prediction perfor-
mance. Specifically, we randomly sample 2k models and
predict their INT8 quantized latency for evaluation. Re-
markably, nn-Meter achieves 92.5% and 100% prediction
accuracy on the Intel VNNI and Pixel 4, respectively.

Figure 1. The choice of channel number greatly impact the INT8
latency of DWConv. INT8 latency of DWConv shows a step pat-
tern. Configuration: HW=28. We set a large DWConv chan-
nel number for measurement because expansion ratios are usually
larger than 3.

4. Additional Quantization Efficiency Analysis

In Section 2, we studied how the operator type and chan-
nel widths in a quantized model impact final inference effi-
ciency. Next, we will illustrate the impact of other configu-
ration dimensions.

Kernel size. Table 5 shows the latency speedup of Conv
and DWConv with different kernel sizes. Results suggest
that the choice of kernel size can result in different speedups
after INT8 quantization. Specifically, we notice that kernel
size is more crucial to DWConv quantization efficiency than
Conv. Unlike Conv can consistently achieve speedups un-
der various kernel sizes, improper kernel size of DWConv
can lead to a significant slowdown. Moreover, the most ef-
ficient kernel size for DWConv is highly relying on the tar-
get devices. DWConv with smaller kernel sizes can achieve
larger speedup on Intel VNNI, while DWConv with K = 3
achieves the maximum speedup of 2.8× on Pixel 4.

Consequently, the INT8 quantized models should con-
sider the choices of kernel sizes to achieve both high ac-
curacy and low inference latency. Instead of searching the
optimal kernel sizes for a search space, we directly allow
all stages to choose from {3, 5, 7}. In our work, we per-
form latency-aware evolutionary search to derive the opti-
mal quantized models from the resulting search space. As
shown in Table 9 and Table 10, the optimal quantization-
friendly kernel sizes are chosen for our discovered model
family SEQnet. For example, kernel size of 3×3 is the dom-
inate choice in DWConv in SEQnet.

Channel number of DWConv. Fig. 1 show the latency of
DWConv 3×3 with different channel number on two de-
vices. Surprisingly, we observe a step pattern: the latency
of DWConv 3×3 achieves minimal at special channel num-
bers. Specifically, in terms of INT8 quantized latency, when
C is divisible to 8 on Pixel 4 (16 on Intel VNNI), the latency
achieves a minimal and can be accelerated by 2.9× (1.7×
on Intel VNNI). Therefore, we constrain the channel widths
in our search space to be divisible by 8 on Pixel 4 and 16 on
Intel VNNI. Moreover, we notice that the latency patterns
of FP32 and INT8 inference are different on two devices,
which further motivates SpaceEvo.

5. Search Space Design Details

Stage Depths Kernel
Size Stride

Channel
Widths

16-divisible
ck

Conv (STEM) 1 3 2 16 - 32 -
Residual (STEM) 1-2 3 1 16 - 32 -

Stage1 2-4 3, 5, 7 2 32 - 64 2
Stage2 2-4 3, 5, 7 2 32 - 96 2
Stage3 2-6 3, 5, 7 2 64 - 144 3
Stage4 2-6 3, 5, 7 1 112 - 192 3
Stage5 2-6 3, 5, 7 2 192 - 304 5
Stage6 1-2 3, 5, 7 1 304 - 448 7

Classifier (head) - - - - -
input resolution 160, 176, 192, 208, 224

Table 6. VNNI hyperspace. We search the optimal block type and
channel widths for Stage1-6.

Stage Depths Kernel
Size Stride

Channel
Widths

8-divisible
ck

Conv (STEM) 1 3 2 16-32 -
MBv2 (STEM) 1-2 3 1 16-32 -

Stage1 2-4 3, 5, 7 2 24 - 32 2
Stage2 2-6 3, 5, 7 2 40 - 56 2
Stage3 2-6 3, 5, 7 2 80 - 104 3
Stage4 2-8 3, 5, 7 1 96 - 128 3
Stage5 2-8 3, 5, 7 2 192 - 256 5
Stage6 1-2 3, 5, 7 1 320 - 416 7

Classifier (head) - - - - -
input resolution 160, 176, 192, 208, 224

Table 7. Pixel4 hyperspace. We search the optimal block type and
channel widths for Stage1-6.

Hyperspace. Table 6 and Table 7 summarize the hyper-
space structures when targeting Intel VNNI CPU and Pixel
4 mobile CPU, respectively. As introduced in Section 3,
we search the 6 stages (Stage1-Stage6) for a quantization-
friendly search space. For each elastic stage, it can search:
(i) an optimal block type from a pool as shown in Table 8;
and (ii) the optimal channel widths for that block type as
shown in Table 6 and Table 7. Other search space dimen-
sions including kernel sizes, expand ratios and input resolu-
tions are unsearchable and using manual settings.

In total, the hyperspace contains ∼109 possible candi-
date search spaces, which is extremely large and we lever-
age the aging evolution for efficient search. For better mu-
tations, we encode a candidate search space as the format
of PerStageBlock-PerStageWidth. As shown in Table 8, we
assign an unique search id for each candidate block types.
For example, 1 indicates selecting the MBv2 block. For the
channel widths, we use the minimal channel index as the en-
coding. For example, 0 indicates selecting channel widths
of {32, 48} (32 is the 0th item in {32, 48, 64}) for Stage1
on the Intel VNNI; 1 indicates selecting {48, 64}. Tak-
ing 111111-000000 as an example, it means that all stages
choose the MBv2 block; and the chosen channel widths for
Stage1 to Stage6 are {32, 48}, {32, 48}, {64, 80, 96}, {112,
128, 144}, {192, 208, 224, 240, 256}, {304, 320, 336, 352,
368, 384, 400}, respectively.

Block type Search id Intel VNNI Pixel4
Expand Ratios Activation Expand Ratios Activation

MBv1 0 - relu - relu
MBv2 1 4, 6, 8 relu6 3, 6, 8 relu6
MBv3 2 4, 6, 8 hswish 3, 6, 8 swish

Residual bottleneck 3 0.5, 1.0, 1.5 relu 0.5, 1.0, 1.5 relu
Residual bottleneck+SE 4 0.5, 1.0, 1.5 relu 0.5, 1.0, 1.5 relu

FusedMB 5 1, 2, 3, 4 swish 1, 2, 3, 4 swish
FusedMB+SE 6 1, 2, 3, 4 swish 1, 2, 3, 4 swish

Table 8. Block choices for an elastic stage. We set larger expand ratios and use swish as the activation function

6. Architecture visualization of SEQnet
We visualize the searched INT8 quantized model archi-

tectures in Table 9 and Table 10. ‘d’ denotes number of
layers, ‘c’ denotes the number of output channels, ‘k’ de-
notes kernel size, ‘e’ denotes expansion ratio. If a stage has
multiple layers, we list out the kernel size, output channel
numbers, expansion ratios for each layer and use ‘-’to sepa-
rate them. For example, c: 32-48 indicates that the channel
numbers are 32 for the first layer and 48 for the second layer.

7. Searched space
Table 11 and Table 12 list out the searched space struc-

tures for Intel VNNI and Pixel4 mobile CPU, respec-
tively. In experiment section, the main results (are reported
through searching the two search spaces. In addition, we
provide the detailed search space structures under other la-
tency constraints in Table 13, Table 14 and Table 15.

References
[1] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-

van, and Quoc V. Le. Autoaugment: Learning augmentation
strategies from data. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
June 2019. 1

[2] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 2

[3] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient
descent with warm restarts. In International Conference on
Learning Representations, 2017. 2

[4] Xiaohu Tang, Shihao Han, Li Lyna Zhang, Ting Cao, and
Yunxin Liu. To bridge neural network design and real-world
performance: A behaviour study for neural networks. In A.
Smola, A. Dimakis, and I. Stoica, editors, Proceedings of Ma-
chine Learning and Systems, volume 3, pages 21–37, 2021.
2

[5] Xudong Wang, Li Lyna Zhang, Yang Wang, and Mao Yang.
Towards efficient vision transformer inference: A first study
of transformers on mobile devices. In Proceedings of the
23rd Annual International Workshop on Mobile Computing
Systems and Applications, HotMobile ’22, page 1–7. Associ-
ation for Computing Machinery, 2022. 2

[6] Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting
Cao, Yuqing Yang, and Yunxin Liu. nn-meter: Towards accu-
rate latency prediction of deep-learning model inference on
diverse edge devices. In Proceedings of the 19th Annual In-
ternational Conference on Mobile Systems, Applications, and
Services, page 81–93, New York, NY, USA, 2021. ACM. 2

SEQnet@vnni-A0 SEQnet@vnni-A1 SEQnet@vnni-A2 SEQnet@vnni-A3 SEQnet@vnni-A4

Conv
d: 1
c: 16
k: 3

d: 1
c: 16
k: 3

d: 1
c: 16
k: 3

d: 1
c: 16
k: 3

d: 1
c: 32
k: 3

Residual bottleneck

d: 1
c: 16
k: 3

e: 0.5

d: 1
c: 16
k: 3

e: 0.5

d: 1
c: 16
k: 3

e: 0.5

d: 1
c: 32
k: 3

e: 0.5

d: 1
c: 32
k: 3

e: 0.5

MBv2

d: 2
c: 32-32
k: 3-3
e: 4-4

d: 2
c: 32-32
k: 3-3
e: 4-4

d: 2
c: 32-32
k: 3-3
e: 4-6

d: 2
c: 32-48
k: 3-3
e: 4-8

d: 3
k: 3-3-3

c: 48-48-32
e: 4-6-6

FusedMB

d: 2
c: 64-64
k: 3-3
e: 1-1

d: 2
c: 64-80
k: 3-3
e: 2-1

d: 2
c: 64-64
k: 3-3
e: 3-2

d: 2
c: 80-80
k: 3-3
e: 4-2

d: 3
c: 64-64-64

k: 5-3-3
e: 4-3-1

MBv2

d: 2
c: 112-112

k: 3-3
e: 4-4

d: 3
c: 128-112-112

k: 3-5-3
e: 4-6-4

d: 4
c: 112-112-128

k: 3-3-5-5
e: 4-4-6-8

d: 3
c: 144-128-112

k: 5-5-5
e: 6-6-6

d: 4
c: 112-112-112-112

k: 5-5-3-5
e: 8-8-4-4

MBv2

d: 2
c: 144-144

k: 3-3
e: 4-4

d: 2
c: 144-176

k: 3-3
e: 4-4

d: 4
c: 144-144-160-160

k: 3-5-5-3
e: 8-4-4-4

d: 4
c: 144-176-144-144

k: 3-3-5-3
e: 6-8-4-4

d: 5
c: 176-176-144-144-160

k: 5-5-3-3-3
e: 8-4-4-6-4

MBv3 (hswish)

d: 2
c: 240-240

k: 3-3
e: 4-4

d: 3
c: 304-304-256

k: 3-3-3
e: 4-6-4

d: 4
c: 288-272-288-256

k: 3-3-3-3
e: 4-6-6-4

d: 4
c: 272-288-272-240

k: 3-5-3-3
e: 8-6-4-6

d: 4
c: 304-272-272-288

k: 3-3-5-3
e: 8-8-6-4

MBv3 (hswish)

d: 1
c: 320
k: 3
e: 4

d: 1
c: 368
k: 5
e: 4

d: 1
c: 320
k: 5
e: 4

d: 1
c: 320
k: 3
e: 6

d: 2
c: 352-320

k: 3-3
e: 6-4

Resolution 160 192 208 224 224
Table 9. INT8 quantized models produced by SpaceEvo@VNNI.

SEQnet@pixel4-A0 SEQnet@pixel4-A1 SEQnet@pixel4-A2 SEQnet@pixel4-A3 SEQnet@pixel4-A4

Conv
d: 1
c: 16
k: 3

d: 1
c: 16
k: 3

d: 1
c: 16
k: 3

d: 1
c: 16
k: 3

d: 1
c: 24
k: 3

MBv2

d: 1
c: 16
k: 3
e: 1

d: 1
c: 16
k: 3
e: 1

d: 1
c: 16
k: 3
e: 1

d: 1
c: 16
k: 3
e: 1

d: 2
c: 16-24
k: 3-3
e: 1-1

MBv2

d: 2
c: 32-32
k: 3-3
e: 3-3

d: 2
c: 32-32
k: 3-3
e: 3-3

d: 2
c: 40-32
k: 3-3
e: 3-3

d: 2
c: 32-32
k: 3-3
e: 8-3

d: 2
k: 3-3

c: 32-32
e: 6-8

MBv3

d: 2
c: 64-64
k: 3-3
e: 3-3

d: 2
c: 64-64
k: 3-3
e: 3-3

d: 2
c: 64-72
k: 3-3
e: 3-3

d: 3
c: 64-72
k: 3-3-5
e: 3-6-3

d: 3
c: 72-64-64

k: 3-3-5
e: 6-3-3

MBv3

d: 2
c: 96-96
k: 3-3
e: 3-3

d: 2
c: 96-96
k: 7-3
e: 3-3

d: 2
c: 96-96
k: 3-3
e: 3-6

d: 3
c: 64-112-96

k: 7-3-3
e: 8-3-6

d: 4
c: 112-96-104-104

k: 3-5-5-3
e: 6-6-3-3

MBv3

d: 2
c: 144-144

k: 3-3
e: 3-3

d: 2
c: 144-144

k: 3-3
e: 3-3

d: 3
c: 152-160-152

k: 5-3-3
e: 3-6-3

d: 4
c: 104-152-144-152

k: 3-3-3-5
e: 6-6-3-3

d: 4
c: 152-144-144-152

k: 3-3-3-5
e: 8-8-6-3

MBv3

d: 2
c: 192-192

k: 3-3
e: 3-3

d: 4
c: 224-192-208-192

k: 3-3-5-3
e: 6-6-6-3

d: 4
c: 200-224-200-200

k: 7-5-7-5
e: 6-3-3-6

d: 4
c: 200-192-208-192

k: 3-3-3-5
e: 6-8-6-6

d: 5
c: 224-216-208-224-208

k: 7-5-3-5-3
e: 8-6-6-3-3

MBv3

d: 1
c: 216
k: 3
e: 3

d: 1
c: 232
k: 3
e: 3

d: 1
c: 248
k: 5
e: 3

d: 1
c: 280
k: 3
e: 6

d: 1
c: 296
k: 3
e: 6

Resolution 160 208 224 224 224
Table 10. INT8 quantized models produced by SpaceEvo@Pixel4

Table 11. SpaceEvo@VNNI: searched space under constraint of {8, 10, 15, 20, 25}ms on VNNI.

Stage Depths Kernel
Size Stride

Channel
Widths

16-divisible
Expand
Ratio

Conv 1 3 2 16 - 32 -
Residual bottleneck 1-2 3 1 16 - 32 0.5

MBv2 2-4 3, 5, 7 2 32 - 48 4, 6, 8
FusedMB 2-4 3, 5, 7 2 64 - 80 1, 2, 3, 4

MBv2 2-6 3, 5, 7 2 112 - 144 4, 6, 8
MBv2 2-6 3, 5, 7 1 144 - 176 4, 6, 8

MBv3 (hswish) 2-6 3, 5, 7 2 240 -304 4, 6, 8
MBv3 (hswish) 1-2 3, 5, 7 1 320 - 416 4, 6, 8

Classifier - - - - -
input resolution 160, 176, 192, 208, 224

Table 12. SpaceEvo@Pixel4: searched space under constraint of {15, 20, 25, 30, 35}ms on Pixel4.

Stage Depths Kernel
Size Stride

Channel
Widths

8-divisible
Expand
Ratio

Conv 1 3 2 16-32 -
MBv2 1-2 3 1 16-32 1
MBv2 2-4 3, 5, 7 2 32 - 40 3, 6, 8
MBv3 2-6 3, 5, 7 2 64 - 72 3, 6, 8
MBv3 2-6 3, 5, 7 2 96 - 112 3, 6, 8
MBv3 2-8 3, 5, 7 1 144 - 160 3, 6, 8
MBv3 2-8 3, 5, 7 2 192 - 224 3, 6, 8
MBv3 1-2 3, 5, 7 1 216 - 312 3, 6, 8

Classifier - - - - -
input resolution 160, 176, 192, 208, 224

Table 13. SpaceEvo@Pixel4-medium: searched space under constraint of {10, 15, 20, 25, 30}ms.

Stage Depths Kernel
Size Stride

Channel
Widths

8-divisible
Expand
Ratio

Conv 1 3 2 16 - 32 -
MBv2 1-2 3 1 16 - 32 1
MBv2 2-4 3, 5, 7 2 32 - 40 3, 6, 8
MBv2 2-4 3, 5, 7 2 64 - 72 3, 6, 8
MBv3 2-6 3, 5, 7 2 88 - 104 3, 6, 8
MBv3 2-6 3, 5, 7 1 144 - 160 3, 6, 8
MBv3 2-6 3, 5, 7 2 200 - 240 3, 6, 8
MBv1 1-2 3, 5, 7 1 216 - 312 3, 6, 8

Classifier - - - - -
input resolution 160, 176, 192, 208, 224

Table 14. SpaceEvo@Pixel4-tiny: searched space under constraint of {6, 10, 15, 20, 25}ms.

Stage Depths Kernel
Size Stride

Channel
Widths

8-divisible
Expand
Ratio

Conv 1 3 2 16-32 -
MBv2 1-2 3 1 16-32 1

Residual bottleneck 2-4 3, 5, 7 2 32 - 40 3, 6, 8
Residual bottleneck 2-6 3, 5, 7 2 48 - 56 3, 6, 8

MBv3 2-6 3, 5, 7 2 88- 104 3, 6, 8
MBv2 2-8 3, 5, 7 1 128 - 144 3, 6, 8
MBv2 2-8 3, 5, 7 2 192 - 224 3, 6, 8
MBv1 1-2 3, 5, 7 1 216 - 312 3, 6, 8

Classifier - - - - -
input resolution 160, 176, 192, 208, 224

Table 15. SpaceEvo@VNNI-large: searched space under constraint of {10, 15, 20, 25, 30}ms.

Stage Depths Kernel
Size Stride

Channel
Widths

16-divisible
Expand
Ratio

Conv 1 3 2 16 - 32 -
Residual bottleneck 1-2 3 1 16 - 32 0.5

MBv2 2-4 3, 5, 7 2 48 - 64 4, 6, 8
MBv3 (hswish) 2-4 3, 5, 7 2 80 - 96 4, 6, 8

MBv2 2-6 3, 5, 7 2 112 - 144 4, 6, 8
MBv2 2-6 3, 5, 7 1 160 - 192 4, 6, 8

MBv3 (hswish) 2-6 3, 5, 7 2 240 - 304 4, 6, 8
MBv3 (hswish) 1-2 3, 5, 7 1 320 - 416 4, 6, 8

Classifier - - - - -
input resolution 160, 176, 192, 208, 224

