
– Supplementary Material –
StyleDiffusion: Controllable Disentangled Style Transfer via Diffusion Models

Zhizhong Wang∗, Lei Zhao†, Wei Xing
College of Computer Science and Technology, Zhejiang University

{endywon, cszhl, wxing}@zju.edu.cn

Contents
• Section A: Discussion of societal impact.
• Section B: List of used assets.
• Section C: Details of style removal process.
• Section D: Details of StyleDiffusion fine-tuning.
• Section E: More timing and resource information.
• Section F: More ablation study and analyses.
• Section G: Extensions to photo-realistic style transfer,

multi-modal style manipulation, and diversified style
transfer.
• Section H: More comparison results with state-of-the-

art style transfer methods.
• Section I: Additional results synthesized by the pro-

posed method.
• Section J: Limitation and discussion.

A. Societal Impact
Positive Impact. There may be three positive impacts of

the proposed method. (1) The proposed method may help
the workers engaged in artistic creation or creative design
improve the efficiency and quality of their work. (2) The
proposed method may inspire researchers in similar fields
to design more effective and superior approaches in the fu-
ture. (3) The proposed method may help the common users
obtain more satisfactory creative results.

Negative Impact. The proposed method may be used
for generating counterfeit artworks. To mitigate this, further
research on identification of generated content is needed.

B. Used Assets
We used the following assets to (1) conduct the compar-

ison experiments [1.-10.] and (2) train the proposed style
transfer networks [11.-12.]. To the best of our knowledge,
these assets have no ethical concerns.

1. Gatys [8]: https://github.com/leongatys/
PytorchNeuralStyleTransfer, MIT License.

∗This work was done when Zhizhong Wang was an intern at Huawei.
†Corresponding author.

2. EFDM [29]: https://github.com/YBZh/
EFDM, MIT License.

3. StyTr2 [3]: https://github.com/
diyiiyiii/StyTR-2, No License.

4. ArtFlow [1]: https://github.com/
pkuanjie/ArtFlow, No License.

5. AdaAttN [18]: https://github.com/
Huage001/AdaAttN, No License.

6. IECAST [2]: https://github.com/
HalbertCH/IEContraAST, MIT License.

7. MAST [4]: https://github.com/
diyiiyiii/Arbitrary-Style-Transfer-
via-Multi-Adaptation-Network, No Li-
cense.

8. TPFR [26]: https://github.com/
nnaisense/conditional-style-
transfer, View License in repository.

9. Johnson [14]: https://github.com/
abhiskk/fast-neural-style, MIT License.

10. LapStyle [17]: https://github.com/
PaddlePaddle/PaddleGAN/blob/develop/
docs/en_US/tutorials/lap_style.md,
Apache-2.0 License.

11. ADM [5]: https://github.com/openai/
guided-diffusion, MIT License.

12. ImageNet [23]: https://image-net.org/, Un-
known License.

C. Details of Style Removal Process
As detailed in Algorithm 1, the style removal process

consists of two steps. In the first step, we remove the color
of the input image I using a color removal operationRcolor
(e.g., the commonly used ITU-R 601-2 luma transform [9]),
obtaining grayscale image I ′. In the second step, we use the
pre-trained diffusion model εθ and adopt the deterministic
DDIM forward and reverse processes to gradually remove
the style information. To accelerate the process without
sacrificing much performance, we use fewer discretization
steps {ts}

Sfor

s=1 such that t1 = 0 and tSfor
= Tremov . We

https://github.com/leongatys/PytorchNeuralStyle Transfer
https://github.com/leongatys/PytorchNeuralStyle Transfer
https://github.com/YBZh/EFDM
https://github.com/YBZh/EFDM
https://github.com/diyiiyiii/StyTR-2
https://github.com/diyiiyiii/StyTR-2
https://github.com/pkuanjie/ArtFlow
https://github.com/pkuanjie/ArtFlow
https://github.com/Huage001/AdaAttN
https://github.com/Huage001/AdaAttN
https://github.com/HalbertCH/IEContraAST
https://github.com/HalbertCH/IEContraAST
https://github.com/diyiiyiii/Arbitrary-Style-Transfer-via-Multi-Adaptation-Network
https://github.com/diyiiyiii/Arbitrary-Style-Transfer-via-Multi-Adaptation-Network
https://github.com/diyiiyiii/Arbitrary-Style-Transfer-via-Multi-Adaptation-Network
https://github.com/nnaisense/conditional-style-transfer
https://github.com/nnaisense/conditional-style-transfer
https://github.com/nnaisense/conditional-style-transfer
https://github.com/abhiskk/fast-neural-style
https://github.com/abhiskk/fast-neural-style
https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/en_US/tutorials/lap_style.md
https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/en_US/tutorials/lap_style.md
https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/en_US/tutorials/lap_style.md
https://github.com/openai/guided-diffusion
https://github.com/openai/guided-diffusion
https://image-net.org/


Algorithm 1: Style Removal Process.
Input: pre-trained model εθ, input image I , return

step Tremov , forward step Sfor, reverse step
Srev , iteration Kr

Output: input image’s content Ic

// Remove color

1 I ′ = Rcolor(I)
// Diffusion-based style removal

2 Compute {ts}
Sfor

s=1 s.t. t1 = 0, tSfor
= Tremov

3 x0 ← I
4 for k = 1 : Kr do
5 for s = 1 : Sfor − 1 do
6 xts+1 ←√

ᾱts+1fθ(xts , ts) +
√

1− ᾱts+1εθ(xts , ts)

7 end
8 xtSrev

← xtSfor

9 for s = Srev : 2 do
10 xts−1 ←√

ᾱts−1fθ̂(xts , ts) +
√

1− ᾱts−1εθ̂(xts , ts)

11 end
12 end
13 Ic ← x0

set Sfor = 40 for forward process and Srev = 40 for re-
verse process in all experiments. While using larger Sfor
or Srev could reconstruct the high-frequency details better,
we found the current setting is enough for our task. For
more details about their effects, we suggest the readers re-
fer to [15]. After Kr iterations (we set Kr = 5 for all ex-
periments) of forward and reverse processes, the style char-
acteristics of I ′ will be dispelled, and thus we obtain the
content Ic of the input image.

D. Details of StyleDiffusion Fine-tuning

Similar to [15] and detailed in Algorithm 2, we first pre-
compute the content latents {xci}Ni=1 using the determin-
istic DDIM forward process of the pre-trained diffusion
model εθ. The precomputed content latents can be stored
and reused for fine-tuning other styles. In our experiments,
we fine-tune the diffusion models for all styles using the
same precomputed latents of 50 content images sampled
from ImageNet [23]. Fine-tuning with more content im-
ages may improve the results but also increases the time
cost. Thus, we made a trade-off and found the current set-
ting could work well for most cases. To accelerate the pro-
cess, we use fewer discretization steps {ts}

Sfor

s=1 such that
t1 = 0 and tSfor

= Ttrans. We set Sfor = 40 for forward
process and Srev = 6 for reverse process in all experiments.
We found Srev = 6 is enough to reconstruct clear content
structures during style transfer.

Algorithm 2: StyleDiffusion Fine-tuning.
Input: pre-trained model εθ, content images’

contents {Icci}Ni=1, style image’s content Ics ,
style image Is, return step Ttrans, forward
step Sfor, reverse step Srev , fine-tuning
epoch K, style reconstruction iteration Ks

Output: fine-tuned model εθ̂
// Precompute content latents

1 Compute {ts}
Sfor

s=1 s.t. t1 = 0, tSfor
= Ttrans

2 for i = 1 : N do
3 x0 ← Icci
4 for s = 1 : Sfor − 1 do
5 xts+1 ←√

ᾱts+1fθ(xts , ts) +
√

1− ᾱts+1εθ(xts , ts)

6 end
7 Save the latent xci ← xtSfor

8 end
// Precompute style latent

9 Compute {ts}
Sfor

s=1 s.t. t1 = 0, tSfor
= Ttrans

10 x0 ← Ics
11 for s = 1 : Sfor − 1 do
12 xts+1 ←

√
ᾱts+1fθ(xts , ts) +

√
1− ᾱts+1εθ(xts , ts)

13 end
14 Save the latent xs ← xtSfor

// Fine-tune the diffusion model

15 Initialize εθ̂ ← εθ
16 Compute {ts}Srev

s=1 s.t. t1 = 0, tSrev
= Ttrans

17 for k = 1 : K do
// Optimize the style reconstruction loss

18 for i = 1 : Ks do
19 xtSrev

← xs

20 for s = Srev : 2 do
21 xts−1 ←√

ᾱts−1fθ̂(xts , ts) +
√

1− ᾱts−1εθ̂(xts , ts)

22 Iss ← fθ̂(xts , ts)
23 L ← LSR(Iss, Is)
24 Take a gradient step on ∇θ̂L
25 end
26 end

// Optimize the style disentanglement loss

27 for i = 1 : N do
28 xtSrev

← xci

29 for s = Srev : 2 do
30 xts−1 ←√

ᾱts−1fθ̂(xts , ts) +
√

1− ᾱts−1εθ̂(xts , ts)

31 Ics ← fθ̂(xts , ts)
32 L ← LSD(Icci, Ics, Ics , Is)
33 Take a gradient step on∇θ̂L
34 end
35 end
36 end



In the second step, we precompute the style latent xs

with the same process as above. The style latent will be
used to optimize the style reconstruction loss.

In the third step, we copy εθ to εθ̂ and start to update εθ̂ in
two substeps. In the first substep, we feed the style latent xs

and generate the stylized image Iss through the determin-
istic DDIM reverse process. The model is updated under
the guidance of the style reconstruction loss LSR. The first
substep is repeated Ks times (we set Ks = 50 for all ex-
periments) until converged. In the second substep, we feed
each content latent in {xci}Ni=1 and generate the stylized im-
age through the deterministic DDIM reverse process. The
model is updated under the guidance of the style disentan-
glement loss LSD. At last, we repeat the whole third stepK
epochs (we set K = 5 for all experiments) until converged.

E. Timing and Resource Information

Here, we provide more details on the timing and resource
information of our StyleDiffusion using an Nvidia Tesla
A100 GPU when stylizing 512× 512 size images.

Style Removal. When we use the default setting
(Sfor, Srev) = (40, 40), the forward and reverse processes
each takes around 4.921 seconds. Therefore, the whole
style removal process takes around 2 × 4.921 × 5 = 49.21
seconds. It requires about 11GB of GPU memory to run at
resolution 512× 512 pixels.

Fine-tuning. As illustrated in Algorithm 2, the StyleDif-
fusion fine-tuning process consists of a latent precomputing
stage and a model updating stage. The latent precomputing
stage is carried out just once and can be reused for fine-
tuning other styles. When we use Sfor = 40 as default,
the forward process takes around 4.921 seconds. There-

0.4

0.5

0.6

0.7

0.8

0.9

1

201 401 601 801

 Content of style image
 Stylized result

𝑇!"#$%

CL
IP

Sc
or
e

Figure 1. C-S disentanglement of style image achieved by ad-
justing the return step Tremov of the style removal module. CLIP
score (averaged on 384 image pairs) measures the style similar-
ity with the style image. When more style information is removed
(blue line), it will be transferred to the stylized result (orange line).

fore, when we precompute the latents from 50 images, it
takes around 50 × 4.921 = 246.05 seconds and requires
about 11GB GPU memory. For the model updating stage,
when the batch size is 1 and Srev = 6, the first sub-
step (optimizing the style reconstruction loss LSR) takes
around 2.092 seconds for each repeat, and the second sub-
step (optimizing the style disentanglement loss LSD) takes
around 3.351 seconds for each content latent. Therefore,
one epoch with 50 repeated first substep and 50 precom-
puted content latents for the second substep takes around
50× 2.092+50× 3.351 = 272.15 seconds. When we fine-
tune the model with 5 epochs, it takes around 23 minutes in
total. The fine-tuning process requires about 26GB of GPU

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

101 201 301 401 601

 SSIM
 CLIP Score

𝑇!"#$%

Sweet spot

Figure 2. C-S trade-off achieved by adjusting the return step
Ttrans of the style transfer module at the training stage while
fixing Ttrans = 301 at the testing stage. SSIM and CLIP score
(averaged on 384 image pairs) measure the content similarity and
the style similarity, respectively.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

101 201 301 401 601

 SSIM
 CLIP Score

𝑇!"#$%

Sweet spot

Figure 3. C-S trade-off achieved by adjusting the return step
Ttrans of the style transfer module at the testing stage while fix-
ing Ttrans = 301 at the training stage. SSIM and CLIP score
(averaged on 384 image pairs) measure the content similarity and
the style similarity, respectively.



Style Content (a) ImageNet-VGG (b) CLIP-ViT-B/16* (c) CLIP-ViT-B/32 (d) CLIP-RN50 (e) CLIP-RN101

SSIM / CLIP Score: 0.541 / 0.602 0.672 / 0.741 0.591 / 0.705 0.529 / 0.677 0.582 / 0.719
Figure 4. Ablation study on different disentanglement space (VGG vs. CLIP, columns (a-b)) and CLIP image encoders (columns
(b-e)). * denotes our default setting. Zoom-in for better comparison.

memory.
Inference. When we use the default setting

(Sfor, Srev) = (40, 6), the forward process takes around
4.921 seconds and the reverse process takes around 0.691
seconds. Therefore, the total inference time is 4.921 +
0.691 = 5.612 seconds. The inference process requires
about 13GB of GPU memory.

Currently, we have not optimized the model size and
GPU memory consumption here. We believe there is sub-
stantial room for improvement, and we would like to elabo-
rate on that in future work.

F. More Ablation Study and Analyses
Quantitative Analyses of C-S Disentanglement. Here,

we provide more quantitative results to analyze the C-S Dis-
entanglement achieved by our StyleDiffusion. As shown in
Fig. 1, we observe that the style is well disentangled from
the content in the style image by adjusting the return step
Tremov of the style removal module. As such, when more
style information is removed (blue line), it will be trans-
ferred to the corresponding stylized result (orange line).
The quantitative analyses are consistent with the qualitative
results displayed in Fig. 4 of our main paper.

Quantitative Analyses of C-S Trade-off. We also pro-
vide more quantitative results to analyze the C-S trade-off
achieved by our StyleDiffusion. As shown in Fig. 2 and
Fig. 3, we can flexibly control the C-S trade-off at both
the training stage (Fig. 2) and the testing stage (Fig. 3) by
adjusting the return step Ttrans of diffusion models. The
sweet spot areas are highlighted in the figures, which are
the most probable for obtaining satisfactory results. Over-
all, the quantitative analyses are consistent with the qualita-
tive results displayed in Fig. 5 of our main paper.

CLIP Space vs. VGG Space. As discussed in our main
paper, we leverage the open-domain CLIP [22] space to
formulate the style disentanglement. The pre-trained CLIP

space integrates rich cross-domain image (and supplemen-
tarily, text) knowledge and thus can measure the “style dis-
tance” more accurately. As shown in Fig. 4 (a-b), we com-
pare it with the ImageNet [23] pre-trained VGG-19 [24],
which has been widely adopted in prior arts [8, 13] to extract
the style information. As is evident, using the CLIP space
recovers the style information more sufficiently and realis-
tically, significantly outperforming the VGG space (which
is also validated by the bottom quantitative scores). It may
be attributed to the fact that the VGG is pre-trained on Ima-
geNet and therefore lacks a sufficient understanding of artis-
tic styles. In contrast, the CLIP space encapsulates a myriad
of knowledge of not only the photograph domain but also
the artistic domain, which is more powerful in depicting the
style of an image. Besides, it is worth noting that the CLIP
space naturally provides multi-modal compatibility, which
can facilitate users to control the style transfer with multi-
modal signals, e.g., image and text (see later Sec. G).

Different CLIP Image Encoders. We also investigate
the effects of different CLIP [22] image encoders to con-
duct the style disentanglement. As shown in Fig. 4 (b-e), in
general, ViTs [6] achieve better visual results than ResNets
(RN) [10], e.g., the brushstrokes are more natural in the top
row, and the colors are more vivid in the bottom row. And
ViT-B/16 performs better than ViT-B/32 in capturing more
fine-grained styles. Interestingly, our findings coincide with
the reported performance of these image encoders on high-
level vision tasks (e.g., classification) in the original CLIP
paper [22]. It indicates that our stylization performance is
closely related to the high-level semantic representations
learned by the image encoder, which also gives evidence
to the correlations between high-level vision tasks and low-
level vision tasks.

Diffusion-based Style Removal vs. AE-based Style
Removal. To demonstrate the superiority of diffusion-
based style removal, we compare it with a possible alter-



Input Input

Diffusion-based: Tremov = 201, 401, 601, 801 Tremov = 601

AE1-based: Iter = 1, 5, 10, 20 Iter = 10

AE2-based: Iter = 1, 5, 10, 20 Iter = 10

AE3-based: Iter = 1, 5, 10, 20 Iter = 5

AE4-based: Iter = 1, 5, 10, 20 Iter = 5

AE5-based: Iter = 1, 5, 10, 20 Iter = 1

Figure 5. Diffusion-based style removal vs. AE-based style removal. The last column shows the enlarged areas of the corresponding
best style removed results manually selected in each row. As can be observed, diffusion-based style removal can better remove the detailed
style of the style image while preserving the main content structures. In contrast, AE-based style removal cannot plausibly remove the
detailed style and often introduces color noises/artifacts and destroys the content structures.



Style Content 1 Result 1 Content 2 Result 2
Figure 6. Photo-realistic style transfer achieved by our StyleDiffusion. We set Tremov = 401 and Ttrans = 101 for this task.

Content Style Result + “Pointillism” + “Sketch” + “Cubism” + “Watercolor”

Figure 7. Multi-modal style manipulation. Our framework is compatible with image and text modulation signals, which provides users
with a more flexible way to manipulate the style of images.

native, i.e., Auto-Encoders (AEs), since one may argue that
the diffusion model is a special kind of (Variational) Auto-
Encoder network [21]. We directly use the AEs released by
Li et al. [16], which employ the VGG-19 network [24] as
the encoders, fix them and train decoder networks for in-
verting VGG features to the original images. They select
feature maps at five layers of the VGG-19, i.e., Relu X 1
(X=1,2,3,4,5), and train five decoders accordingly, which
we denote as AEX (X=1,2,3,4,5) in the following. When
used for style removal, we iteratively perform the encod-
ing and decoding processes of AEs for the input images.
The comparison results are shown in Fig. 5. As can be
observed in the bottom five rows, AE-based style removal
cannot plausibly remove the detailed style and often intro-
duces color noises/artifacts and destroys the content struc-
tures, which is undesirable for style removal. By con-
trast, diffusion-based style removal can smoothly remove
the style details while preserving the main content struc-
tures, significantly outperforming AE-based style removal.

G. Extensions
Photo-realistic Style Transfer. Our StyleDiffusion suc-

cessfully separates style from content in a controllable man-
ner. Thus, it can easily achieve photo-realistic style trans-
fer [20] by adjusting the content extraction of the style re-
moval module. Specifically, since the style of a photo is
mainly reflected by the low-level and high-frequency fea-
tures such as colors and brightness, we reduce Tremov to
a relatively smaller value, e.g., 401. Moreover, to better

preserve the content structures, we adjust the style transfer
process and reduce Ttrans to 101. We show some photo-
realistic style transfer results synthesized by our StyleDif-
fusion in Fig. 6.

Multi-modal Style Manipulation. As our framework
leverages the open-domain CLIP [22] space to measure the
“style distance”, it is naturally compatible with image and
text modulation signals. By adding a directional CLIP loss
term [7, 15] to our total loss, our framework can easily
achieve multi-modal style manipulation, as shown in Fig. 7.
As far as we know, our framework is the first unified frame-
work to achieve both image and text guided style transfer.

Diversified Style Transfer. In the fine-tuning, our style
transfer module adopts the deterministic DDIM [25] for-
ward and reverse processes (Eq. (8) and Eq. (9) in the main
paper). However, during inference, we can directly replace
the deterministic DDIM forward process with the stochastic
DDPM [12] forward process (Eq. (2) in the main paper) to
achieve diversified style transfer [27], as shown in Fig. 8.
The users can easily trade off the diversity and quality by
adjusting the return step or iteration of the DDPM forward
process. The diverse results can give users endless choices
to obtain more satisfactory results [27, 28].

H. More Comparison Results

In Fig. 12 and 13, we provide more qualitative compari-
son results with state-of-the-art style transfer methods.



Style Content Sample 1 Sample 2 Sample 3 Sample 4 Animation

Figure 8. Diversified style transfer. Our framework can easily achieve diversified style transfer during inference by directly adopting the
stochastic DDPM [12] forward process. Click on the last image to see animation using Adobe Reader.

Content Content gray Style Result
Figure 9. Failure case of type 1: vanishing of salient content.
Some results generated by our method may vanish the salient con-
tent of the content image, e.g., the red carps.

I. Additional Stylized Results

In Fig. 14 and 15, we provide additional stylized results
synthesized by our proposed StyleDiffusion.

J. Limitation and Discussion

Except for the limitations we have discussed in the main
paper, here we provide some failure cases and analyze the
reasons behind them. Further, we also discuss the possible
solutions to address them, which may help inspire future
improvements to our framework.

Vanishing of Salient Content. Some of our generated
results may vanish the salient content of the content image,
e.g., the red carps in Fig. 9. It can be attributed to the color
removal operation used in our style removal module. The
commonly used ITU-R 601-2 luma transform [9] may not
well preserve the original RGB image’s color contrast and
color importance, as shown in column 2 of Fig. 9. We adopt
it here mainly for its simplicity and fast speed. This prob-
lem may be addressed by using more advanced contrast-
preserving decolorization techniques, like [19].

Biased Color Distribution. As shown in Fig. 10, though
our method learns the challenging pointillism style well,
the color distribution seems to stray from that of the style
image. This problem can be alleviated by increasing the
style reconstruction iteration Ks (see Algorithm 2) to inject
more style prior, but the training time also increases sig-
nificantly. One may consider borrowing some ideas from
existing color transfer approaches [11] to address this prob-

Style Result 1 Result 2 Result 3
Figure 10. Failure case of type 2: biased color distribution.
Our method may generate results that deviate from the color dis-
tribution of the style image.

Style Style removed Result 1 Result 2
Figure 11. Failure case of type 3: inseparable content and
style. Our method is hard to transfer plausible style for style im-
ages with inseparable content and style. The second column shows
the style removed result of the style image.

lem.
Inseparable Content and Style. Our method is hard to

achieve plausible style transfer for style images with insep-
arable content and style, e.g., the simple line art shown in
Fig. 11. Since the content of line art is also its style, our
framework is hard to separate them properly, as shown in
column 2 of Fig. 11. One possible solution is to treat line
art as the style only and increase the return step Tremov of
the style removal module to dispel as much style informa-
tion as possible, or increase the return step Ttrans of the
style transfer module to learn as sufficient line art style as
possible.



Content Ours Gatys [8] EFDM [29] StyTR2 [3] ArtFlow [1] AdaAttN [18]

Style IECAST [2] MAST [4] TPFR [26] Johnson [14] LapStyle [17]

Content Ours Gatys [8] EFDM [29] StyTR2 [3] ArtFlow [1] AdaAttN [18]

Style IECAST [2] MAST [4] TPFR [26] Johnson [14] LapStyle [17]

Content Ours Gatys [8] EFDM [29] StyTR2 [3] ArtFlow [1] AdaAttN [18]

Style IECAST [2] MAST [4] TPFR [26] Johnson [14] LapStyle [17]

Figure 12. More qualitative comparison results (set 1) with state of the art. Zoom-in for better comparison.



Content Ours Gatys [8] EFDM [29] StyTR2 [3] ArtFlow [1] AdaAttN [18]

Style IECAST [2] MAST [4] TPFR [26] Johnson [14] LapStyle [17]

Content Ours Gatys [8] EFDM [29] StyTR2 [3] ArtFlow [1] AdaAttN [18]

Style IECAST [2] MAST [4] TPFR [26] Johnson [14] LapStyle [17]

Content Ours Gatys [8] EFDM [29] StyTR2 [3] ArtFlow [1] AdaAttN [18]

Style IECAST [2] MAST [4] TPFR [26] Johnson [14] LapStyle [17]

Figure 13. More qualitative comparison results (set 2) with state of the art. Zoom-in for better comparison.



Figure 14. Additional stylized results (set 1) synthesized by our proposed StyleDiffusion. The first row shows content images and the
first column shows style images.



Figure 15. Additional stylized results (set 2) synthesized by our proposed StyleDiffusion. The first row shows content images and the
first column shows style images.



References
[1] Jie An, Siyu Huang, Yibing Song, Dejing Dou, Wei Liu,

and Jiebo Luo. Artflow: Unbiased image style transfer via
reversible neural flows. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 862–871, 2021. 1, 8, 9

[2] Haibo Chen, Lei Zhao, Zhizhong Wang, Huiming Zhang,
Zhiwen Zuo, Ailin Li, Wei Xing, and Dongming Lu. Artistic
style transfer with internal-external learning and contrastive
learning. Advances in Neural Information Processing Sys-
tems (NeurIPS), 34:26561–26573, 2021. 1, 8, 9

[3] Yingying Deng, Fan Tang, Weiming Dong, Chongyang Ma,
Xingjia Pan, Lei Wang, and Changsheng Xu. Stytr2: Im-
age style transfer with transformers. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 11326–11336, 2022. 1, 8, 9

[4] Yingying Deng, Fan Tang, Weiming Dong, Wen Sun, Feiyue
Huang, and Changsheng Xu. Arbitrary style transfer via
multi-adaptation network. In Proceedings of the 28th ACM
International Conference on Multimedia (ACM MM), pages
2719–2727, 2020. 1, 8, 9

[5] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 34:8780–8794, 2021. 1

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In International Con-
ference on Learning Representations (ICLR), 2020. 4

[7] Rinon Gal, Or Patashnik, Haggai Maron, Amit H Bermano,
Gal Chechik, and Daniel Cohen-Or. Stylegan-nada: Clip-
guided domain adaptation of image generators. ACM Trans-
actions on Graphics (TOG), 41(4):1–13, 2022. 6

[8] Leon A Gatys, Alexander S Ecker, and Matthias Bethge.
Image style transfer using convolutional neural networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2414–2423,
2016. 1, 4, 8, 9

[9] Rafael C Gonzalez. Digital image processing. Pearson edu-
cation india, 2009. 1, 7

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016. 4

[11] Mingming He, Dongdong Chen, Jing Liao, Pedro V Sander,
and Lu Yuan. Deep exemplar-based colorization. ACM
Transactions on Graphics (TOG), 37(4):1–16, 2018. 7

[12] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in Neural Information
Processing Systems (NeurIPS), 33:6840–6851, 2020. 6, 7

[13] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 1501–1510, 2017. 4

[14] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In

Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 694–711. Springer, 2016. 1, 8, 9

[15] Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Dif-
fusionclip: Text-guided diffusion models for robust image
manipulation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
2426–2435, 2022. 2, 6

[16] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,
and Ming-Hsuan Yang. Universal style transfer via feature
transforms. In Advances in Neural Information Processing
Systems (NeurIPS), pages 386–396, 2017. 6

[17] Tianwei Lin, Zhuoqi Ma, Fu Li, Dongliang He, Xin Li, Errui
Ding, Nannan Wang, Jie Li, and Xinbo Gao. Drafting and
revision: Laplacian pyramid network for fast high-quality
artistic style transfer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5141–5150, 2021. 1, 8, 9

[18] Songhua Liu, Tianwei Lin, Dongliang He, Fu Li, Meiling
Wang, Xin Li, Zhengxing Sun, Qian Li, and Errui Ding.
Adaattn: Revisit attention mechanism in arbitrary neural
style transfer. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 6649–6658,
2021. 1, 8, 9

[19] Cewu Lu, Li Xu, and Jiaya Jia. Contrast preserving de-
colorization with perception-based quality metrics. Interna-
tional Journal of Computer Vision (IJCV), 110(2):222–239,
2014. 7

[20] Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala.
Deep photo style transfer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4990–4998, 2017. 6

[21] Calvin Luo. Understanding diffusion models: A unified per-
spective. arXiv preprint arXiv:2208.11970, 2022. 6

[22] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning
(ICML), pages 8748–8763. PMLR, 2021. 4, 6

[23] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015. 1, 2, 4

[24] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 4, 6

[25] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In International Conference
on Learning Representations (ICLR), 2020. 6

[26] Jan Svoboda, Asha Anoosheh, Christian Osendorfer, and
Jonathan Masci. Two-stage peer-regularized feature recom-
bination for arbitrary image style transfer. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 13816–13825, 2020. 1, 8, 9

[27] Zhizhong Wang, Lei Zhao, Haibo Chen, Lihong Qiu, Qihang
Mo, Sihuan Lin, Wei Xing, and Dongming Lu. Diversified



arbitrary style transfer via deep feature perturbation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 7789–7798, 2020. 6

[28] Zhizhong Wang, Lei Zhao, Haibo Chen, Zhiwen Zuo, Ailin
Li, Wei Xing, and Dongming Lu. Divswapper: Towards di-
versified patch-based arbitrary style transfer. In Proceedings
of the Thirty-First International Joint Conference on Artifi-
cial Intelligence (IJCAI), pages 4980–4987, 2022. 6

[29] Yabin Zhang, Minghan Li, Ruihuang Li, Kui Jia, and Lei
Zhang. Exact feature distribution matching for arbitrary
style transfer and domain generalization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8035–8045, 2022. 1, 8, 9


	anm0: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


