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A. Ablation Studies

In this section, we conduct more ablation studies on hy-
perparameter choices of the proposed 3D-to-2D generative
pre-training, discussing more thoroughly the insights into
architectural design and objective function design. We imple-
ment PointMLP [3] as the 3D backbone model and conduct
these ablation experiments on the hardest PB-T50-RS variant
of the ScanObjectNN [6] dataset. We report the classification
accuracy of the fine-tuning results.

A.l. Cross-Attention Hyperparameters

In Table la, we display the results of ablation studies
on the number of layers and feature channels of the cross-
attention layers in our proposed Photograph module. From
the quantitative results, we can conclude that 2 layers with
128 channels is the best hyperparameter group for cross-
attention layers. When we implement a shallow layer setting
(2 layers in line 1 and 4 layers in line 2), lower feature chan-
nels (128 dims) achieves better performance. On the contrary,
when we implement a deeper layer setting (6 layers in line
3 and 8 layers in line 4), relatively higher feature channels
(256 dims) is the best choice. Additionally, if we use 1024
dims as the feature channels in cross-attention layers, which
is the same as the channels of output features from the 3D
backbone model, the pre-training stage totally collapses and
the fine-tuning results are much lower than models of 128
dims and 256 dims, no matter how much layers are imple-
mented. This result indicates that a bottleneck design in our
proposed photograph module is essential for the successful
pre-training of the proposed 3D-to-2D generation.

The overall trend is that a lightweight architectural design
of the cross-attention layers is better than a heavy module
design. This may be because we completely drop the pho-
tograph module and only keep the 3D backbone in the fine-
tuning stage. Therefore, a lightweight photograph module in
the pre-training stage will encourage the 3D backbone to ex-
ploit more representation ability and avoid information loss
in the fine-tuning stage to the best extent. On the contrary, if

Table 1: Ablation Studies on Hyperparameters. We imple-
ment PoinMLP [3] as the 3D backbone model and conduct
experiments on the hardest PB-T50-RS variant of ScanOb-
jectNN [6] dataset.

(a) Cross-Attention Hyperparameters.

LayerNum \ Channels ‘ 128 Dims 256 Dims 1024 Dims

2 Layers 89.1 87.9 86.3
4 Layers 88.7 88.0 85.9
6 Layers 88.3 88.5 85.3
8 Layers 87.7 88.1 85.8

(b) Loss Weight Hyperparameters.
Model ‘ G1 G2 G3 G4 G5 G()* ‘ H1 H2

w'e 2 5 10 20 30 50| 0 20
w"e 1 1 1 1 1 1 0 1
wieat o 0 o0 0 o0 0|2 2

Acc. (%)|87.1 872 88.0 88.5 88.0 86.8|86.3 87.8

we implement a heavy photograph module with deep cross-
attention layers and high feature dimensions, the photograph
module will dominate the generation process and the impor-
tance of the 3D backbone will be neglected. What’s worse,
in the fine-tuning stage, the rich geometry information in
the heavy photograph module is totally dropped out and no
longer helpful for downstream tasks.

A.2. Objective Function

In this subsection, we discuss the objective function de-
sign of our proposed 3D-to-2D generative pre-training. In
our main paper, we implement pixel-level supervision with
MSE loss between generative view images Ige, and ground
truth images Iy

Lpix(Igen; Igt) = wng(féina I;%) + wbgD(IEegm Igtg) ()
where fg denotes foreground region, bg denotes background
region and D is the MSE distance. However, in 2D genera-
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Figure 1: Visualization of the outputs from the 3D-to-2D generative pre-training. The first line shows the generated view
images from the model. The second line shows the ground truth images for reference.

tion, perceptual loss [2] is of equal importance with pixel-
wise loss. While pixel-wise MSE loss focuses on low-level
similarities, perceptual loss measures high-level semantic
differences between feature representations of the images
computed by the pre-trained loss network. Technically, per-
ceptual loss makes use of a loss network ¢ pre-trained for
image classification, which is typically a 16-layer VGG [5]
network pre-trained on the ImageNet [4] dataset. If we de-
note ¢;(x) as the feature map with size ¢; x h; x w; of the
jth layer of the network ¢, then the perceptual loss is defined
as the Euclidean distance:

1 1
Lreat(Lgen, Igt) = 7 > W”@Ugen) — (I3 @
j VAR Radi]

where N is the number of total layers of the VGG network
and 1 < j < N. If we combine the pixel-wise loss Lpix with
the perceptual loss Ly, then the final objective function of
the proposed 3D-to-2D generation is:

L= l:pix + wfealcfeal 3)

In Table 1b, we conduct ablations on loss weight of fore-
ground pixel-wise loss w, background pixel-wise loss w®2
and perceptual loss w™®. In Model G to G, we only im-
plement pixel-wise loss. In Model H;, we only implement
perceptual loss. In Model Hs, we combine pixel-wise loss
with perceptual loss. From the ablation results, we can con-
clude that w'® : w" = 20 : 1 is the best hyperparameter
choice for pixel-wise loss. However, the perceptual loss is
not effective when we compare Model G4, Model H; and
Model H». This is mainly due to the reason that the rendered
view image of synthetic ShapeNet [ 1] dataset is out of the
distribution of the realistic ImageNet [4] that the loss model
¢ is pre-trained on. Therefore, the high-level semantic repre-
sentation ability of ¢ on view images is relatively poor and
cannot guide the optimization of the 3D-to-2D generation
process. If the rendered images are more realistic with colors
and background, then the perceptual loss is expected to help
3D-to-2D generative pre-training.
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(a) ModelNet40. (b) ScanObjectNN.

Figure 2: Visualization of feature distributions in t-SNE
representations. Best view in colors.

B. Visualization Results
B.1. Generated View Images

Figure 1 displays more visualization results of our gener-
ated view images from the 3D-to-2D generative pre-training
process. We take ShapeNet [ 1] as the pre-training dataset and
implement PointMLP [3] as the 3D backbone model. The
first line shows the generated results from our model while
the second line shows ground truth images for reference. The
visualization results convey that our 3D-to-2D generative
pre-training can successfully predict the shape and colors of
the objects from specific projection views. There are also
some unsatisfactory cases in the last three columns, where
there are some vague details in our generated images. This
is mainly due to the large downsample ratio (x32) in our
model design.

B.2. Feature Distributions

Figure 2 shows feature distributions of ModelNet40 [7]
and ScanObjectNN [6] datasets in t-SNE visualization. We
choose PointMLP [3] as the 3D backbone and pre-train on
ShapeNet [ 1] dataset. We can conclude that with our pro-
posed 3D-to-2D pre-training, the 3D backbone model can
extract discriminative features after fine-tuning on down-
stream classification datasets.



gy

":;g%.;,.

Figure 3: Illustration of part segmentation results.

B.3. Part Segmentation Visualizations

Figure 3 presents visualizations of part segmentation re-
sults on samples from the ShapeNetPart dataset. Each part is
represented by a distinct color for clarity. These qualitative
results serve as compelling visual evidence and provide a
vivid illustration of the efficacy of our fine-tune model in
achieving accurate part segmentation.
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