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In Sec. 1, we introduce our approach for generating pair-
wise correspondences, which serves as a noisy supervision
signal for optimizing OmniMotion. In Sec. 2, we present
additional ablation experiments, and in Sec. 3, we provide
supplementary implementation details.

1. Preparing pairwise correspondences
Our method uses pairwise correspondences from existing

methods, such as RAFT [8] and TAP-Net [3], and consoli-
dates them into dense, globally consistent, and accurate cor-
respondences that span an entire video. As a preprocessing
stage, we exhaustively compute all pairwise correspondences
(i.e., between every pair of frames i and j) and filter them
using cycle consistency and appearance consistency checks.

When computing the flow field between a base frame
i and a target frame j as i → j, we always use the flow
prediction for the previous target frame (i → j − 1) as ini-
tialization for the optical flow model (when possible). We
find this improves flow predictions between distant frames.
Still, the flow predictions between distant frames can contain
significant errors, and therefore we filter out flow vector esti-
mates with cycle consistency errors (i.e., forward-backward
flow consistency error) greater than 3 pixels.

Despite this filtering process, we still frequently observe
a persistent type of error that remains undetected by cycle
consistency checks. This type of spurious correspondence,
illustrated in Fig. 5, occurs because flow networks can strug-
gle to estimate motion for regions that undergo significant
deformation between the two input frames, and instead opt
to interpolate motion from the surrounding areas. In the ex-
ample in Fig. 5, this leads to flow on the foreground person
“locking on” to the background layer instead. This behavior
results in incorrect flows that survive the cycle consistency
check, since they are consistent with a secondary layer’s
motion (e.g., background motion). To address this issue,
we additionally use an appearance check: we extract dense
features for each pixel using DINO [2] and filter out cor-
respondences whose features’ cosine similarity is < 0.5.
In practice, we apply the cycle consistency check for all
pairwise flows and supplement it with an appearance check

Figure 5: Erroneous correspondences after cycle consistency
check. The red bounding box highlights a common type of incorrect
correspondences from flow networks like RAFT [8] that remains
undetected by cycle consistency check. The left images are query
frames with query points and the right images are target frames
with the corresponding predictions. Only correspondences on the
foreground object are shown for better clarity.

when the two frames are more than 3 frames apart. We found
this filtering process consistently eliminates major errors in
flow fields across different sequences without per-sequence
tuning. The results of our filtering approach, after both cycle
and appearance consistency checks, are illustrated in Fig. 6.

One drawback of such a filtering process is that it will
also remove correct flows for regions that become occluded
in the target frame. For certain correspondence methods
(such as RAFT), including these motion signals during oc-
clusion events can result in better final motion estimates.
Therefore, we devise a simple strategy for detecting reliable
flow in occluded regions. For each pixel, we compute its
forward flow to a target frame (a), cycle flow (flow back to
the source frame from the target pixel) (b), and a second for-
ward flow (c). This process effectively amounts to a 2-pass
cycle consistency check: the consistency between (a) and
(b) forms a standard cycle consistency check, and the consis-
tency between (b) and (c) forms a secondary, supplementary
one. We identify pixels where (a) and (b) are inconsistent
but (b) and (c) are consistent and deem these to be occluded



Figure 6: Correspondences from RAFT [8] after both cycle and
appearance checks. The left column shows a single query frame,
and the right column displays target frames with increasing frame
distances to the query frame from top to bottom. The filtered
correspondences are reliable without significant errors.

pixels. We found this approach effective in identifying reli-
able flows for occluded regions—particularly when the two
frames are close to each other. Therefore, we allow these
correspondences to bypass cycle consistency checks if they
span a temporal distance of less than 3 frames. Our exper-
iments use this added signal for the variant of our method
that uses RAFT flow, but not for the TAP-Net variant, as we
found the predicted correspondences from the latter were
less reliable near occlusion events.

We can also optionally augment the supervising input flow
by chaining sequences of correspondences that are deemed
reliable (i.e., those that satisfy the cycle consistency and
appearance consistency checks). This helps densify the set
of correspondences, creating supervision between distant
frames where the direct flow estimates were deemed unreli-
able and therefore discarded during filtering. We found this
process to be beneficial especially for challenging sequences
with rapid motion or large displacements, where optical flow
estimates between non-adjacent frames are less reliable.

2. Additional ablations
In addition to the ablations in the main paper, we provide

the following ablations and report the results in Table 1: 1)
Plain 2D: Rather than using a quasi-3D representation with
bijections to model motion, we utilized a simple 8-layer MLP
with 256 neurons that takes the query pixel location, query
time, and target time as input and outputs the corresponding
location in the target frame. Although we applied positional
encoding with 8 frequencies to the input to enable better fit-

Method AJ ↑ < δxavg ↑ OA ↑ TC ↓

Plain 2D 11.6 19.8 76.7 1.25
No invertible 12.5 21.4 76.5 0.97
No flow loss 23.9 37.3 70.8 1.75
No photometric 42.3 58.3 84.1 0.83
Uniform sampling 47.8 61.8 83.6 0.88
#Samples K = 8 48.1 63.5 84.6 0.75
#Samples K = 16 49.7 65.0 85.6 0.84

Full 51.7 67.5 85.3 0.74

Table 1: Ablation study on DAVIS [6].

ting, this ablation failed to capture the holistic motion of the
video, instead only capturing simpler motion patterns for the
rigid background. 2) No flow loss: we remove the flow loss
and only rely on photometric information for training. We
find this approach is effective only for sequences with small
motion, where a photometric loss can provide useful signals
to adjust motion locally. For sequences with relatively large
motion, this method fails to provide correct results. 3) We
also vary the number of samples K for each ray from 32 to
16 and 8. The resulting ablations, named #Samples K=8 and
#Samples K=16, demonstrate that using a denser sampling
strategy tends to produce better results.

3. Additional implementation details
We provide additional implementation details below and

will release our code upon acceptance.

Error map sampling. We cache the flow predictions gen-
erated by our model every 20k steps and use them to mine
hard examples for effective training. Specifically, for each
frame in the video sequence, we compute the optical flow
between that frame and its subsequent frame, except for the
final frame where we compute the flow between it and the
previous frame. We then compute the L2 distance between
the predicted flow and supervising input flow, where each
pixel in the video is now associated with a flow error. In
each training batch, we randomly sampled half of the query
pixels using weights proportional to the flow errors and the
other half using uniform sampling weights.

Training details. In addition to the photometric loss Lpho
introduced in the main paper, we include an auxiliary loss
term that supervises the relative color between a pair of
pixels in a frame:

Lpgrad =
∑
Ωp

||(Ĉi(p1)− Ĉi(p2))− (Ci(p1)−Ci(p2))||1

(1)
Here, (Ĉi(p1)− Ĉi(p2)) is the difference in predicted color
between a pair of pixels, and (Ci(p1) − Ci(p2)) is the
corresponding difference between ground-truth observations.
This loss is akin to spatial smoothness regularizations or



gradient losses that supplement pixel reconstruction losses
in prior work [4, 7], but instead computed between pairs
of randomly sampled, potentially distant pixels p1 and p2,
rather than between adjacent pixels. We apply the same
gradient loss to the flow prediction as well. We found that
including these gradient losses helps improve the spatial
consistency of estimates, and more generally improves the
training process. We also use distortion loss introduced in
mip-NeRF 360 [1] to suppress floaters.

We train our network with the Adam optimizer with base
learning rates of 3 × 10−4, 1 × 10−4, and 1 × 10−3 for
the density/color network Fθ, the mapping network Mθ,
and the MLP that computes the latent code, respectively.
We decrease the learning rate by a factor of 0.5 every 20k
step. To select correspondences during training, we begin
by sampling correspondences from pairs of frames with a
maximum interval of 20, and gradually increase the window
size during training. Specifically, we expand the window by
one every 2k steps.

In our loss formulation, we compute the flow loss Lflo
as a weighted sum of the mean absolute error (MAE) be-
tween each pair of correspondences in a training batch. The
weight is determined by the frame interval, and is given by
w = 1/ cos(∆/N ′ ·π/2), where ∆ is the frame interval, and
N ′ is the current window size. The coefficient λpho for the
photometric loss initially starts at 0 and linearly increases to
10 over the first 50k steps of training. After 50k steps, λpho
stays fixed at 10. This design is motivated by our observa-
tion that the photometric loss is not effective in fixing large
motion errors early on in the training process, but is effective
in refining the motion. The coefficient λreg for smoothness
regularization is set to 20. We use the same set of network
architecture and training hyperparameters when evaluating
different datasets in the TAP-Net benchmark.

When sampling on each ray, we use a stratified sampling
strategy and sample K = 32 points on each ray between the
near and far depth range. Additionally, when mapping a 3D
location from one local volume to another, we encourage
it to be mapped within our predefined depth range to avoid
degenerate solutions.

During training, we use alpha compositing to propagate
the training signal to all samples along a ray. However,
at inference time, we instead compute the corresponding
location using the single sample with the largest alpha value,
which we found to produce quantitatively similar but visually
better results.

Network architecture for Mθ. We illustrate the archi-
tecture for our invertible network Mθ that maps between
local and canonical coordinate frames in Fig. 7. Mθ is com-
prised of six affine coupling layers with alternating split
patterns (only the first layer is highlighted in Fig. 7). The
learnable component in each affine coupling layer is an MLP
that computes a scale and a translation from a frame latent
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Figure 7: Network architecture for the mapping network Mθ . We
show the first affine coupling layer, which is representative of the
subsequent layers, except for the different splitting patterns used.
As mentioned in the main paper, this architecture is fully invertible,
i.e., it can be queried in either direction, from (u, v, w) to (x, y, z)
and vice-versa.

code ψi and the first part of the input coordinates. This
scale and translation is then applied to the second part of the
input coordinate. This process subsequently is repeated for
each of the other coordinates. The MLP network in each
affine coupling layer has 3 layers with 256 channels. We
found that applying positional encoding [5] to the MLP’s
input coordinates improved its fitting ability, and we set the
number of frequencies to 4.

Deformable sprites evaluation. Because the Deformable
Sprites method defines directional mappings from image
space to atlas space, we must approximate the inverses of
these mappings in order to establish corresponding point
estimates between pairs of frames. We do this by performing
a nearest neighbor search: all points in the target frame
are mapped to the atlas, and the closest atlas coordinate to
the source point’s mapping is chosen as the corresponding
pixel. Furthermore, occlusion estimates are extracted using
the following process: (1) initialize the layer assignment of
source point tracks to the layer which has the higher opacity
at the source frame, (2) at a given target frame index, denote
the point as occluded if its originally assigned layer has
lower opacity than the other layer.
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