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Appendix

1. More Ablation Study

1.1. Mat-Label w/ Different Image Matting Meth-
ods

Table 1. Mat-Label w/ different matting algorithms on PASCAL
VOC 2012 train set

PASCAL VOC 2012 Train set
Configuration mIoU (%)

D2CAM (Baseline) 58.0
+ Closed Form Matting [6] 61.4
+ LBDM [11] 61.8
+ RW [4] 61.3
+ MatteFormer [10] 61.9
+ KNN Matting [2] 62.3

Table 1 shows a comparison of our Mat-Label using dif-
ferent image matting algorithms [6, 11, 4, 2, 10] for ini-
tializing the labels on PASCAL VOC 2012 train set. We
implement these methods based on PyMatting1 and Matte-
Former2. All variants use exactly the same inputs. Closed
Form Matting [6], LBDM [11], RW [4] are hand-crafted
methods while KNN Matting [2] and MatteFormer [10]
are learning-based methods. It can be seen that KNN
Matting [2] achieves the highest performance improvement
(+4.3%). It is worth noting that the performance of our Mat-
Label pipeline on WSSS task can be further improved with
the advancement of image matting technology.

Table 2. Mat-Label w/ different CAMs on PASCAL VOC 2012
train set with mIoU (%).

PASCAL VOC 2012 Train set
Pure CAMs mIoU Mat-Label w/ CAMs mIoU

CAM [12] 48.0 CAM [12] 50.2+2.2

ReCAM [3] 54.8 ReCAM [3] 56.3+1.5

D2CAM (ours) 58.0 D2CAM (ours) 62.3+4.3

1.2. Mat-Label as a Refinement of CAMs

Table 2 reports the results of our Mat-Label pipeline as
a refinement of existing CAMs. CAM [12] is the clas-
sical class activation map generation method, while Re-
CAM [3] is the recent advanced class activation map gen-
eration method. It can be seen that our Mat-Label pipeline
can be used as a refinement to bring consistency improve-
ments to existing CAMs. Our specially designed D2CAM
for Mat-Label can enjoy a higher performance boost due to
its ability to produce good foreground-background division.
We follow the suggestion to set up Table 3 to explore the im-
pact of each step on the final mask performance. The results
show that applying only KNN matting (Non-deep learning)
brings less improvement than IRN (deep learning based),
but applying image matting is crucial for the final high per-
formance (+1.5%) because it provides better initialization
for IRN.

2. Hyperparameters Exploration
2.1. Exploration of the Loss Functions’ Weights

For methods that use multiple loss function terms for
joint optimization, setting weights for the loss functions
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Table 3. Impact of different refine technologies on overall pipeline
performance.

+ CRF [5]+ IRN [1]+ Mat-Label (image matting)mIoU (%)
" 63.9
" " 71.4
" " 65.8
" " " 72.9

is unavoidable. As shown in Table 4, (γ1,γ2,γ3) are the
weights of Ld2,Lma,Loe, respectively. We determine the
loss function weights by sequentially imposing. Specifi-
cally, the weight of classification loss Lcls is fixed to 1.
The optimal weights (γ1) of Ld2 is searched first, then the
optimal weight (γ2) of Lma is searched, and finally the
weight (γ3) of Loe is searched. Notice that we fix the opti-
mal parameters of the previous phase in each search phase.
In finding the optimal weights, we use a grid search [7]
(i.e., adjusting the weights by a fixed distance) to adjust the
weights. Finally, we choose the optimal (0.50,2.00,0.50) as
the default setting for the loss functions weights.

Table 4. Exploration of loss function weights on PASCAL VOC
2012 train set with mIoU (%).

(γ1,γ2,γ3) mIoU (%) (γ1,γ2,γ3) mIoU (%)

(0.25, 0.00, 0.00) 50.1 (0.75, 0.00, 0.00) 52.8
(0.50, 0.00, 0.00) 53.7 (1.00, 0.00, 0.00) 49.6
(0.50, 0.25, 0.00) 53.9 (0.50, 1.50, 0.00) 55.8
(0.50, 0.50, 0.00) 54.8 (0.50, 1.75, 0.00) 56.7
(0.50, 0.75, 0.00) 54.3 (0.50, 2.00, 0.00) 56.8
(0.50, 1.00, 0.00) 55.6 (0.25, 2.25, 0.00) 56.2
(0.50, 1.25, 0.00) 55.9 (0.25, 2.50, 0.00) 55.3
(0.50, 2.00, 0.25) 57.4 (0.50, 2.00, 0.75) 57.5
(0.50, 2.00, 0.50) 58.0 (0.50, 2.00, 1.00) 57.2

2.2. The Impact of Margin Threshold m in Eq. (7)

The foreground (Mfg) contains too much area also
makes Ld2 drop low, so it is necessary to impose Lma as
a constraint. To prevent the optimization from dropping
into a local optimum at the beginning of the optimization
(only Lma is optimized), Lma sets margin m, and resulting
in these two losses can be steadily decreased together with
mutual constraints at the later optimization stage (after Ld2

also start optimization). Figure 1 shows the effect of dif-
ferent margin thresholds m of Lma on the performance of
D2CAM. Specifically, we conduct experiments on the PAS-
CAL VOC 2012 train set using D2CAM with exactly the
same configuration except for m. The yellow five-pointed
star represents the highest mIoU. We can see that D2CAM

Figure 1. The impact of margin threshold m in margin-wise area
loss.

achieves the best performance when m is set to 0.2. One
possible explanation is that the average value of the fore-
ground pixels as a percentage of the whole image pixels
may be around 20%.

2.3. The Impact of Weight λ in Eq. (7)

Table 5. The Impact of weight λ in margin-wise area loss.

PASCAL VOC 2012 train set
λ mIoU (%)

0.000 57.4
0.025 57.7
0.050 58.0
0.075 57.6
0.100 56.9

Table 5 shows the effect of different λ of Lma on the
performance of D2CAM. The default optimal configuration
is used for all configurations except λ. The experimental
results show that the performance is higher when λ = 0.05
(in Lma) than when λ = 0. So the result shows that setting
λ to provide a continuous area constraint for optimization is
necessary. Since m (in Lma and be explored in Figure 1) is
a hard threshold, the area occupied by the object is less than
m in some samples and therefore can benefit from contin-
ued optimization.

2.4. Exploration of Thresholds εfg and εbg

In fact, our Mat-Label pipeline has only two additional
hyperparameters, i.e. εfg and εbg , than the original pure
CAM [12] solution. Due to the clear distinction between
foreground and background regions in D2CAM, this causes
it to be robust to the selection of εfg and εbg . Specifi-
cally, Figure 3 reports our exploration of thresholds selec-



Image

CAM

D2CAM

trimap

Mat-Label

Ground
Truth

Figure 2. Some failure cases about our Mat-Label on PASCAL VOC 2012 dataset.

Figure 3. Exploration of generating trimap thresholds on PAS-
CAL VOC 2012 train set with mIoU (%). The x-axis is εbg and
the y-axis is εfg .

tion. The x-axis is εbg and the y-axis is εfg . It can be ob-
served that similar average performance can be obtained for
εbg ∈ (0.15, 0.25) and εfg ∈ (0.7, 0.8), and we use the op-
timal one (εbg = 0.2 and εfg = 0.75) as the default setting.

3. Limitations and Future Work
3.1. Limitations

The limitation of our Mat-Label is the need to rely on
high quality trimap. Figure 2 shows some examples of fail-
ure cases regarding our Mat-Label. Specifically, (a), (b) and
(c) exhibit incomplete foreground regions while (d) and (e)
exhibit over-activation of background regions. For example,
although our D2CAM in (a) overcomes the challenge of oc-
clusion well (fence), there are missing foreground regions
(red bounding box). Similarly, the D2CAM does not get
activated in (b) and (c) for the complete foreground region.
This trend leads to the acquisition of low quality trimap,
while common image matting algorithms are unable to ac-
curately estimate α under such conditions. In the trimaps of
(d) and (e), some background regions are divided into the
foreground, which results in the image matting algorithm
not being able to obtain an accurate foreground background
distinction using the wrong prior information. However, we
note that even in the wrong example, our Mat-Label is still
more accurate than the original class activation map, which
means that Mat-Label does not degrade the quality of the
generated pseudo masks (e.g. D2CAM vs Mat-Label in (e)).

3.2. Future Work

For future work, we can improve the following two as-
pects to obtain a higher quality trimap. On the one hand,
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Figure 4. Some examples of Mat-Label generation visualizations.

we can improve the accuracy of foreground-background di-
vision of the class activation map to obtain a higher quality
trimap. For example, the resolution of the class activation
map can be increased, and the edge information can be in-
troduced to reduce under-activation and over-activation. On
the other hand, our approach of using fixed thresholds to
generate trimap can be optimized because the same thresh-
olds are not perfectly applicable to different images. We
can model the unknown region explicitly by uncertainty es-
timation and explore the threshold-free trimap generation
approach.

4. More Visualizations

More visualizations of our Mat-Label generation are
shown in Fig. 4. It can be seen that our D2CAM has a
more complete and accurate foreground-background divi-
sion than CAM. Our Mat-Label derived pseudo mask is
close to the ground truth mask.

Table 6. Comparisons on the Running Speed. The speed is cal-
culated from a single image (512 × 512) at the same settings (a
single NVIDIA RTX A6000 GPU).

Methds CAM [12] ReCAM [3] D2CAM Mat-Label
Time (s) 0.36 0.71 0.39 1.42

mIoU (%) 48.0 54.8 58.0 62.3

5. Operational Efficiency Analysis

Table 6 shows a comparison of the speed of running sin-
gle image inference. The original CAM extracts the class
activation map by applying the FC layer (1× 1 Conv layer)
to the last feature map (H ×W × 2048), as shown in main
paper Figure 1 (a). In contrast, our D2CAM extracts the
class activation map by applying the 3 × 3 Conv layer to
the penultimate feature map (H × W × 1024). In addi-
tion, D2CAM does not need to go through the final convolu-
tion layer in the inference stage. In summary, our D2CAM
is comparable to the original CAM on running speed, as
shown in Table 6. Mat-Label needs to perform image mat-



ting operations and therefore requires additional runtime
consumption. However, compared with the performance
improvement, this extra calculation is worthy. In addition,
the image matting algorithm we use runs on the CPU is a
major influence on the speed consumption. The operational
efficiency can be improved in future work by introducing
efficient real-time deep learning based image matting algo-
rithms [8, 9].
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