
UMC: A Unified Bandwidth-efficient and Multi-resolution based
Collaborative Perception Framework

Supplementary Material

Tianhang Wang1, Guang Chen1,�∗, Kai Chen1, Zhengfa Liu1, Bo Zhang2, Alois Knoll3, Changjun Jiang1
1Tongji University, 2Shanghai Westwell Technology Co., Ltd, 3Technische Universität München

{tianya wang,guangchen,14sdck,1811466,cjjiang}@tongji.edu.cn
bob.zhang@westwell-lab.com knoll@in.tum.de

False

Object type at last

frame whether in

[ARSV,ARCV]

False

False

ARSV ARCV

ARCI

ARTC

��sp

True True True

��cp

Objects

Figure 1. In the test set, we traverse all objects in each
frame to obtain their corresponding types. Note that sp, cp
are short for detected points from single and collaborative
view, respectively.

1

1

2

2

Timestamp: t-1 Timestamp: t

Figure 2. The detailed process of manually labelling.

1. Detailed information of Proposed
Metrics

The detailed process of proposed metrics are shown
in Figure 1. We traverse all objects in each frame
to obtain their corresponding types. Note that the
type of ARSV/ARCV can be automatically generated
with code, as shown in Listing 1. And the type of
ARCI/ARTC needs to be manually labeled, because
whether it is visible at the last moment cannot be di-
rectly determined due to the movement of the vehicles
from t− 1 to t, as shown in Figure 2.

For detailed process of manually labelling, e.g., at

∗Corresponding author: guangchen@tongji.edu.cn. Our code
is available at:https://github.com/ispc-lab/UMC.

Table 1. The ARSV and ARCV performance with different
threshold points τ .

Points ARSV50/70 ARCV50/70

10 81.48/77.48 23.72/19.34
7 79.44/75.05 15.34/11.88
5 77.73/73.21 6.08/4.07
4 76.90/72.35 4.62/3.45

timestamp t, we firstly label vehicles with yellow back-
ground as ARCI type. Then, by comparing with time
t−1, we find that agent 1,2 are visible at time t−1 (with
no yellow background). Based on that, we change the
type of agent 1,2 from ARCI to ARTC. The pseudo
code are as follows:

1 s i n g l e v i ew = np . load (. . .)
2 c o l l ab v i ew = np . load (. . .)
3 f o r ob j e c t in l en (s i n g l e v i ew . ob j e c t s) :
4 i f s i n g e l v i ew [ob j e c t] . po in t s > threho ld :
5 ob j e c t . type = ARSV
6 e l s e :
7 i f c o l l ab v i ew [ob j e c t] . po in t s >

threho ld :
8 ob j e c t . type = ARCV
9 e l s e :

10 ob j e c t . type = ARCI
11

12 % Fina l ly , we w i l l manually l a b e l p a r t i a l ARCI
to ARTC, as shown in Figure 2 .

Listing 1. Pseudo code for proposed metrics

As for the threshold points τ , the proposed met-
rics distinguish between ARSV and ARCV based on
whether they are visible. Nevertheless, whether they
are visible depends on the number of points included
in each object and the performance of the detector. To
verify at how many points the detector can not detect
the object, we conducted the following experiments on
the No Fusion model.

Table 1 shows the ARSV and ARCV in terms of
different points. We can see that i) as the number of
points decreases, so does the ARCV. This is because, as

the points become more accurate, the no fusion model
should theoretically be 0 in terms of ARCV; ii) when
the points are greater than 5, the decline in ARCV is
very large. When points are less than 5, the decline
of the ARCV slows down, indicating it is close to the
accurate points; iii) when points equal 4, the ARCV
is 4.62% in IoU@0.5 and 3.45% in IoU@0.7, which are
within the acceptable error range of 5%. So, to decide
if an object is visible, we look at how many points it
has and whether that number is greater than 4.

Note that the ‘last frame’ of ARTC’s time interval
varies based on the sampling frequency (5Hz in V2X-
Sim, 10Hz in OPV2V). And, the ARSV and ARCV
only take recall into account, while the AP is weighted
by both recall and precision. Hence, a high AP does not
necessarily mean high ARSV or ARCV values. Based
on that, you may wonder why not utilize APSV/APCV
as the new metric. It is because the each proposed
model can only predict the classifications (background
or foreground) and regressions (x,y,w,h) of each pixel.
Therefore, there is no prediction of the corresponding
types for each detected objects.

2. Experiments details

2.1. Basic parameters

Our experiments are all performed on the worksta-
tion with AMD Core Ryzen Threadripper 3960X CPU
and Nvidia 3090 GPU with Pytorch v1.7.1, CUDA
11.0. The SRAR-based’s transmitted collaborative fea-
ture map (TCF) has a dimension of 32 × 32 × 256. Our
proposed UMC’s TCFs have the dimension of 32 × 32
× 256, 64 × 64 × 128. As for hyper-parameter tuning,
we choose Adam as the optimizer and set the batch size
to 4 for both V2X-Sim and OPV2V datasets. Also, we
utilize the same number of scenes (total 80 scenes) for
training. For testing stage, the V2X-sim utilizes 10
scenes, and OPV2V utilizes 15 scenes. Meanwhile, we
use initial learning rate of 0.001 and set the random
seed to 622.

2.2. Baseline setting

To ensure fairness, we fix the structure of the
shared feature extractor MotionNet[9] and detector,
and transplant the collaborative part of the differ-
ent methods without modification. Meanwhile, all
the models are trained 100 epoch with initial learning
rate of 0.001 and set the learning rate update strat-
egy as ‘torch.optim.lr scheduler.MultiStepLR(self. op-
timizer head, milestones=[50, 100], gamma=0.5)’.

(a) (c)

(b) (d)

(e)

(f)

No Measurement

Sparse Measurement

No Measurement

Sparse Measurement

Figure 3. Difference between where2comm and UMC com-
munication strategy. (a) The ego agent’s observation. (b)
The ego agent’s observation at feature level. (c) The col-
laborator’s observation, red box denoted for the detected
agents. (d) The collaborator’s observation at feature level.
(e) Communication map of where2comm. (f) Communica-
tion map of UMC.

2.3. Communication Volume

The communication volume for each method is cal-
culated by: mean(log(

∑agents
i=1

∑T
t=1(F.size +Q.size)))

during the test stage. F represents the transmitted
feature map, and Q represents the query matrix, which
is calculated in UMC, who2com, and when2com, and
equals 0 in other methods.

2.4. Setting of δs, δc

Table 2. The performance-bandwidth trade off with differ-
ent δs, δc values on V2X-Sim dataset.

δs δc ARSV50/70 ↑ ARCV50/70 ↑ ARCI50/70 ↓ ARTC50/70 ↑ AP50/70 ↑ C.V. ↓
50 100 85.66/81.87 70.76/63.15 2.41/1.7 11.88/8.12 68.97/61.35 20.58

50 50 84.78/80.73 67.46/60.72 2.50/1.78 11.88/8.12 67.83/60.02 19.92

50 10 80.62/75.39 31.48/23.53 2.17/1.37 12.03/7.20 59.57/50.50 18.4

20 100 87.30/84.08 74.08/66.77 16.68/12.24 22.15/17.41 66.98/59.24 19.68

20 50 83.23/78.98 56.49/48.87 2.12/1.51 11.23/8.08 64.77/56.79 19

20 10 80.53/75.38 19.02/12.33 2.14/1.38 9.16/6.74 58.00/49.46 17.63

10 100 86.57/82.97 59.37/51.68 14.57/10.51 19.09/15.15 63.59/55.84 19.06

10 50 82.12/77.44 38.52/31.28 2.16/1.47 10.77/8.35 61.57/53.43 18.376

10 10 80.78/75.51 13.29/8.97 2.21/1.39 10.77/8.35 57.62/49.27 17.171

5 100 86.04/82.59 47.19/40.44 14.17/9.9 19.25/15.14 61.04/53.99 18.375

5 20 80.87/75.72 15.09/10.76 2.12/1.36 10.77/8.35 57.67/49.45 17.17

1 100 85.44/81.49 34.59/28.72 13.47/9.88 20.49/17.35 58.07/50.72 17.15

We record the proposed UMC under different (δs, δc)
in terms of the trade-off between performance and com-
munication bandwidth, as shown in Table 2.

Meanwhile, we comprehensively analyze the com-
munication strategy between where2comm[1] and our
proposed UMC. As shown in Figure 3, where2comm
takes the advantages of sparsity of foreground infor-
mation and only transmits the regions that the agents

have. However, as for different downstream tasks, such
as segmentation[10] or scene completion[4], there are
other no-measurement or sparse-measurement regions
that need collaborator’s communication, as shown in
Figure 3.(b). Hence, our proposed UMC aim to
optimize not only detection but also general down-
stream tasks based on the traditional information the-
ory. From the Figure 3.(f), we can observe that UMC
can transmit the necessary regions to ego agent for gen-
eral downstream tasks.

Note that in addition to discussing the top-δ% based
filtering strategy of Eq.1 in manuscript, we also ex-
plored the mean based filtering strategy, the corre-
sponding performance is shown as follows:

Table 3. The performance of mean based filtering strategy
on V2X-Sim dataset.

δs δc ARSV50/70 ↑ ARCV50/70 ↑ ARCI50/70 ↓ ARTC50/70 ↑ AP50/70 ↑ C.V. ↓
mean 84.67/80.68 67.01/60.04 2.38/1.70 12.35/9.46 67.80/60.01 19.23

3. Performance analysis

3.1. Computation complexity

The configuration of the experiment platform has
been described in Section 2.1. Based on that, in terms
of computations, the proposed entropy-cs only requires
about 0.136G FLOPS with 0.66 ms latency to process a
256× 32×32 (C,H,W) feature map (more architecture
details are shown in Section 4.1).

Compared to DiscoNet[3], the proposed C-GRU
costs about 4.10G FLOPS more with 12.7 ms latency.

3.2. Is Early Fusion always be better?

We discuss the performance of early fusion model.
As we all know, Early fusion aggregates the raw mea-
surements from all collaborators, promoting a holis-
tic perspective. From the Table 1 in manuscript, the
early fusion performs extremely good, even better than
all the other baselines in some metrics. However,
V2VNet[8] actually shows early fusion is far from opti-
mal due to noises in real sensors. To address the above
issue, since the dataset of V2VNet is not open source,
we conduct experiments on OPV2V[12] with Gaussian
noises. As shown in Table 4, we agree that the perfor-
mance of Early Fusion may be degraded by noises to
some extent.

Table 4. Comparisons on OPV2V dataset.[Best, Worst]
Method ARSV50/70 ARCV50/70 AP50/70

No Fusion 69.33/46.35 12.32/4.36 54.69/23.94

Early Fusion 64.62/46.95 45.00/24.39 55.88/25.89

UMC 76.56/47.68 47.82/25.06 61.90/24.50

Table 5. Comparisons of single-grain selection.
Multi-Grains Selection

F e,t
i,1 F e,t

i,2 F e,t
i,3

AP50/70 ↑ C. V. ↓
� 56.73/49.22 7.88

� 58.96/52.86 8.12
� 57.43/51.66 8.36

3.3. Grains selection

Table 3 in manuscript compares the performance of
different selections of grain level. We also include com-
parisons of single-grain, as shown in Table 5. Note that
the heavy memory burden of all resolution baseline is
not applicable on our RTX 3090.

3.4. More details about ablations analysis

Table 4 in manuscript shows that a tremendous drop
when adding Entropy-CS in variant 3 and 4. From
our perspectives, variant 3 and 4 are based on single-
resolution, then variant 3 (w/ entropy-cs)costs about
1
4 communication of variant 4. Based on [1], when the
communication is too small, the collaborative detec-
tion performance will suffer, resulting in a tremendous
drop in variant 3. However, variant 3 still achieves de-
tection gain compared with No Fusion (improved by
9.40%/9.25% ↑ in AP50/70, respectively).

Meanwhile, AP of variant 2 is worse than variant
4 with comparable ARSV and better ARCV, this is
because The ARSV and ARCV only take recall into
account, while the AP is weighted by both recall and
precision. Therefore, in variants 2 and 4, a high AP
does not necessarily mean high ARSV or ARCV values,
more details about proposed metrics can be found in
Section 1.

3.5. Unified framework design

We summarize the main contributions of recent col-
laborative algorithms in Table 6, , where � indicates
that a unique module is designed and − indicates that
general operations are utilized. Our proposed UMC
optimizes the communication, collaboration, and re-
construction process with multi-resolution technique.

Table 6. Contribution summary.
Method Comm. Collab. Recons.

Who2com (ICRA 2020 [6]) � - -

When2com (CVPR 2020 [5]) � - -

V2VNet (ECCV 2020 [8]) - � -

DiscoNet (NIPS 2021 [3]) - � -

V2X-ViT (ECCV 2022 [11]) - � -

Where2comm (NIPS 2022 [1]) � � -

UMC (ours) � � �

4. Detailed architecture of the model

Note that we will release the source code.

4.1. Architecture of entropy-CS

1 de f a c c e n t r o py s e l e c t i o n (s e l f , tg agent ,
nb agent , de l ta1 , de l ta2 , M=3, N=3) :

2 s e l f . s tack = stack channe l (1 , 9 ,
k e r n e l s i z e =3, padding=1)

3 w = nb agent . shape [−2]
4 h = nb agent . shape [−1]
5 batch nb = nb agent . reshape (−1 , 1 , 1 ,

1)
6 s tack = s e l f . s tack (nb agent) . permute

(2 , 3 , 1 , 0) . cont iguous () . reshape (−1 , 9 , 1 ,
1)

7

8 p = F. s igmoid ((s tack − batch nb)) .mean
(dim=1) . reshape (w, h)

9 entropy tmp = p ∗ torch . l og (p)
10

11 with torch . no grad () :
12 t op de l t a = torch . s o r t (entropy tmp

. reshape (−1) , descending=True)
13 s e l f h o l d e r = top de l t a [0] [i n t (w∗h

∗ de l t a1)]
14

15 masker = torch . where (entropy tmp>=
s e l f h o l d e r)

16

17 s t a ck t g = s e l f . s tack (tg agent) .
permute (2 , 3 , 1 , 0) . cont iguous () . reshape (−1 ,
9 , 1 , 1)

18 p t = F. s igmoid ((s t a ck t g − batch nb))
.mean(dim=1) . reshape (w, h)

19 ent ropy t = p t ∗ torch . l og (p t)
20

21 tmp masker = − torch . o n e s l i k e (
ent ropy t)

22 tmp masker [masker] = ent ropy t [masker]
23

24 with torch . no grad () :
25 t op de l t a2 = torch . s o r t (tmp masker

[tmp masker !=−1]. reshape (−1) , descending=
True)

26 th r e sho ld s = top de l t a2 [0] [i n t (w∗h
∗ de l t a2)]

27

28 r e turn torch . where (tmp masker>=
thr e sho ld s)

29

30

31 c l a s s s tack channe l (nn . Conv2d) :
32 de f i n i t (s e l f , i n channe l s ,

out channe l s , k e r n e l s i z e , s t r i d e =1,
padding=0, b i a s=False , i n t e r p l a t e=’ none ’) :

33 super (s tack channe l , s e l f) . i n i t (
in channe l s , out channe l s , k e r n e l s i z e=
k e r n e l s i z e , s t r i d e=s t r i d e , padding=
padding , b i a s=b ia s)

34

35 s qua r e d i s = np . z e r o s ((out channe l s ,
k e r n e l s i z e , k e r n e l s i z e))

36

37 f o r i in range (out channe l s) :
38 s qua r e d i s [i , i //3 , i %3] = 1
39

40 s e l f . s qua r e d i s = nn . Parameter (torch .
Tensor (s qua r e d i s) , r e qu i r e s g r ad=False)

41

te
jih ,

,

G
ra

ph
-b

as
ed

 C
G

R
U

Reset

te
jiF ,

,

Collab

te
jiC ,

,

t
jiZ ,1�

Update

te
jiE ,

,

t
jiZ ,

t
jiR ,

te
jikF ,

,��

1,

,

�� te
jih

1,

,
ˆ �te

jih

Figure 4. The architecture of G-CGRU.

42 de f forward (s e l f , x) :
43

44 ke rne l = s e l f . s qua r e d i s . detach () .
unsqueeze (1)

45 s tack = F. conv2d (x , kerne l , s t r i d e =1,
padding=1, groups=1)

46

47 r e turn stack

Listing 2. Entropy-CS code

Our contribution of entropy-based selection is both
theoretical and practical. The intuition of entropy-
cs is low computational complexity and high inter-
pretability. The entropy-cs is no parameter and single-
round communication to reduce heavy bandwidth bur-
den brought by multi-resolution technique.

4.2. Architecture of G-CGRU

To facilitate understanding, we have simplified
many formulas and steps in manuscript. Hence,
we add more technique details about the section of
Graph-based Collaborative GRU.

For the ego agent i of the j-th resolution interme-
diate feature maps, the inputs of G-CGRU are hidden
states he,t−1

i,j , the ego agent observation F e,t
i,j , and the

supporters’ selected feature maps {F ′e,t
k→i,j}k �=i, then

the updates for G-CGRU at t-th step can be formu-
lated as:

ĥ
e,t−1

i,j = Λ(he,t−1
i,j , ξt−1→t

i)

Rt
i,j = Reset(F e,t

i,j , ĥ
e,t−1

i,j)

Zt
i,j = Update(ĥ

e,t−1

i,j ,F e,t
i,j)

h
′e,t−1
i,j = ĥ

e,t−1

i,j �Rt
i,j

Ce,t
i,j = Collab(h

′e,t−1
i,j , {F ′e,t

k→i,j}k �=i,F
e,t
i,j)

Ee,t
i,j = Zt

i,j �Ce,t
i,j + (1−Zt

i,j)� ĥ
e,t−1

i,j

he,t
i,j = W 3×3 ∗Ee,t

i,j

(1)

where �, ∗ represent dot product and 3×3 convolu-
tion operation, respectively. W 3×3 indicates trainable
parameters. The last time hidden feature he,t−1

i,j needs
conduct feature alignment operation from t− 1 to t to

get ĥ
e,t−1

i,j , which ensure the ĥ
e,t−1

i,j and F e,t
i,j are sup-

ported in the same coordinate system.
The Reset and Update gate modules share the same

structure. Here we take Reset as an example:

W ir = σ(W 3×3 ∗ ([ĥe,t−1

i,j ;F e,t
i,j]))

Rt
i,j = σ(W ir � ĥ

e,t−1

i,j + (1−W ir)� F e,t
i,j)

(2)

where σ(·), [·; ·] represent Sigmoid function and con-
catenation operation along channel dimensions. The
gate Rt

i,j ∈ R
K,K,C learns where the hidden features

he,t−1
i,j are conducive to the present.
Based on the above Reset and Update modules, we

thus derive the Collab module. To make better col-
laborative feature integration, we construct a collabo-
ration graph Gt

c(V ,E) in Collab module, where node
V = {Vi}i=1,...,N is the set of collaborative agents
in environment and E = {W k→i}i,k=1,...,N is the set
of trainable edge matrix weights between agents and
models the collaboration strength between two agents.
Let CGt

c
(·) be the collaboration process defined in the

Collab module’s graph Gt
c. The j-th resolution en-

hanced maps of ego i agent after collaboration are

Ee,t
i,j ← CGt

c
(he,t−1

i,j ,F
′e,t
k→i,j ,F

e,t
i,j). This process has two

stages: message attention (S1) and message aggrega-
tion (S2).

W k→i = Π([h
′e,t−1
i,j ;F

′e,t
k→i,j ;F

e,t
i,j] ∈ R

K,K

W̄ k→i =
eW k→i∑N

m=1 e
W t

m→i

Ce,t
i,j =

N∑
m=1

W̄m→i ◦ F
′e,t
m→i,j

(3)

In the message attention stage (S1), each agent de-
termines the matrix-valued edge weights, which reflect
the strength from one agent to another at each indi-
vidual cell. To determine the edge weights, we firstly
get the conductive history information from hidden fea-

tures by Reset gates through h
′e,t−1
i,j ← ĥ

e,t−1

i,j �Rt
i,j .

Then, we utilize the edge encode Π to correlate the his-
tory information, the feature map from another agent
and ego feature map; that is, the matrix-value edge
weight from k-th agent to the i-th agent is W k→i =

Π(h
′e,t−1
i,j ,F

′e,t
k→i,j ,F

e,t
i,j) ∈ R

K,K , where Π concatenates
three feature maps along the channel dimension and

then utilizes four 1 × 1 convolutional layers to gradu-
ally reduce the number of channels from 3C to 1, more
details are shown in Section 4.6. Also, to normalize
the edge weights across different agents, we implement
a softmax operation on each cell of the feature map.

In the message aggregation stage (S2), each agent
aggregates the feature maps from collaborators based
on the normalized matrix-valued edge weights, the up-
dated feature map Ce,t

i,j is utilized by
∑N

k=1 W k→i ◦
F

′e,t
k→i,j , where ◦ represents the dot production broad-

casting along the channel dimension.

Finally, the collaborative map is Ee,t
i,j = Zt

i,j�Ce,t
i,j+

(1−Zt
i,j)�he,t−1

i,j . Note that the Zt
i,j is generated by

Update gate and � is the dot product. And, the hidden
state is updated as he,t

i,j ← W 3×3 ∗Ee,t
i,j .

4.3. Architecture of shared encoder

We use the main architecture of MotionNet[9] as our
shared encoder. The input BEV map’s dimension is
(c, w, h) = (13, 256, 256). We describe the architecture
of the encoder below:

1 nn . Sequent i a l (
2 nn . Conv2d (13 , 32 , 3 , s t r i d e =1, padding=1)
3 nn . BatchNorm2d (32)
4 nn .ReLU()
5 nn . Conv2d (32 , 32 , 3 , s t r i d e =1, padding=1)
6 nn . BatchNorm2d (32)
7 nn .ReLU()
8 nn .Conv3D(64 , 64 , (1 , 1 , 1) , s t r i d e =1)
9 nn .Conv3D(128 , 128 , (1 , 1 , 1) , s t r i d e =1)

10 nn . Conv2d (32 , 64 , 3 , s t r i d e =2, padding=1)
11 nn . BatchNorm (64)
12 nn .ReLU()
13 nn . Conv2d (64 , 128 , 3 , s t r i d e =2, padding=1)
14 nn . BatchNorm(128)
15 nn .ReLU()
16 nn . Conv2d (128 , 128 , 3 , s t r i d e =1, padding

=1)
17 nn . BatchNorm(128)
18 nn .ReLU()
19 nn . Conv2d (128 , 256 , 3 , s t r i d e =2, padding

=1)
20 nn . BatchNorm(256)
21 nn .ReLU()
22 nn . Conv2d (256 , 256 , 3 , s t r i d e =1, padding

=1)
23 nn . BatchNorm(256)
24 nn .ReLU()
25 nn . Conv2d (256 , 512 , 3 , s t r i d e =2, padding

=1)
26 nn . BatchNorm(512)
27 nn .ReLU()
28 nn . Conv2d (512 , 512 , 3 , s t r i d e =1, padding

=1)
29 nn . BatchNorm(512)
30 nn .ReLU())

Listing 3. Shared encoder code

4.4. Architecture of SRAR-based shared decoder

The input of the SRAR-based shared decoder is the
intermediate feature output by each layer of the en-
coder. Its architecture is shown below:

1 nn . Sequent i a l (
2 nn . Conv2d(512 + 256 , 256 , 3 , 1 , 1)
3 nn . BatchNorm2d (256)
4 nn .ReLU()
5 nn . Conv2d (256 , 256 , 3 , 1 , 1)
6 nn . BatchNorm2d (256)
7 nn .ReLU()
8 nn . Conv2d(256 + 128 , 128 , 3 , 1 , 1)
9 nn . BatchNorm2d (128)

10 nn .ReLU()
11 nn . Conv2d (128 , 128 , 3 , 1 , 1)
12 nn . BatchNorm2d (128)
13 nn .ReLU()
14 nn . Conv2d(128 + 64 , 64 , 3 , 1 , 1)
15 nn . BatchNorm2d (64)
16 nn .ReLU()
17 nn . Conv2d (64 , 64 , 3 , 1 , 1)
18 nn . BatchNorm2d (64)
19 nn .ReLU()
20 nn . Conv2d(64 + 32 , 32 , 3 , 1 , 1)
21 nn . BatchNorm2d (32)
22 nn .ReLU()
23 nn . Conv2d (32 , 32 , 3 , 1 , 1)
24 nn . BatchNorm2d (32)
25 nn .ReLU())

4.5. Architecture of query generator

The entropy-CS compresses the intermediate feature
to generate query matrix by query generator, which
is for light communication. Its architecture is shown
below:

1 nn . Sequent i a l (
2 nn . Conv2d (256 , 64 , 1 , 1 , 0)
3 nn . BatchNorm2d (64)
4 nn .ReLU()
5 nn . Conv2d (64 , 1 , 1 , 1 , 0)
6 nn .ReLU())

Listing 4. Query generator code

4.6. Architecture of edge encoder Π

1 c l a s s EdgeEncoder (nn . Module) :
2 de f i n i t (s e l f , channel) :
3 super (EdgeEncoder , s e l f) . i n i t ()
4

5 s e l f . conv1 1 = nn . Conv2d (channel , 128 ,
k e r n e l s i z e =1, s t r i d e =1, padding=0)

6 s e l f . bn1 1 = nn . BatchNorm2d (128)
7

8 s e l f . conv1 2 = nn . Conv2d (128 , 32 ,
k e r n e l s i z e =1, s t r i d e =1, padding=0)

9 s e l f . bn1 2 = nn . BatchNorm2d (32)
10

11 s e l f . conv1 3 = nn . Conv2d (32 , 8 ,
k e r n e l s i z e =1, s t r i d e =1, padding=0)

12 s e l f . bn1 3 = nn . BatchNorm2d (8)
13

14 s e l f . conv1 4 = nn . Conv2d (8 , 1 ,
k e r n e l s i z e =1, s t r i d e =1, padding=0)

15

16 de f forward (s e l f , x) :
17 x = x . view (−1 , x . s i z e (−3) , x . s i z e (−2) ,

x . s i z e (−1))
18 x 1 = F. r e l u (s e l f . bn1 1 (s e l f . conv1 1 (x

)))
19 x 1 = F. r e l u (s e l f . bn1 2 (s e l f . conv1 2 (

x 1)))
20 x 1 = F. r e l u (s e l f . bn1 3 (s e l f . conv1 3 (

x 1)))
21 x 1 = F. r e l u (s e l f . conv1 4 (x 1))
22

23 r e turn x 1

Listing 5. Edge encoder code

4.7. Architecture of MGFE

1 c l a s s MGFE(nn . Module) :
2 de f i n i t (s e l f , input channe l) :
3 super (MGFE, s e l f) . i n i t ()
4

5 s e l f . gu ide v1 = nn . Conv2d (128 , 128 ,
k e r n e l s i z e =1, s t r i d e =1, padding=0)

6 s e l f . gu ide v1 bn = nn . BatchNorm2d (128)
7 s e l f . guide = nn . Conv2d (256 , 256 ,

k e r n e l s i z e =1, s t r i d e =1, padding=0)
8 s e l f . guide bn = nn . BatchNorm2d (256)
9

10 s e l f . conv5 1 = nn . Conv2d(512 + 256 +
256 , 256 , k e r n e l s i z e =3, s t r i d e =1, padding
=1)

11 s e l f . bn5 1 = nn . BatchNorm2d (256)
12

13 s e l f . conv5 2 = nn . Conv2d (256 , 256 ,
k e r n e l s i z e =3, s t r i d e =1, padding=1)

14 s e l f . bn5 2 = nn . BatchNorm2d (256)
15

16 s e l f . conv6 1 = nn . Conv2d(256 + 128 +
128 , 128 , k e r n e l s i z e =3, s t r i d e =1, padding
=1)

17 s e l f . bn6 1 = nn . BatchNorm2d (128)
18

19 s e l f . conv6 2 = nn . Conv2d (128 , 128 ,
k e r n e l s i z e =3, s t r i d e =1, padding=1)

20 s e l f . bn6 2 = nn . BatchNorm2d (128)
21

22 s e l f . conv7 1 = nn . Conv2d(128 + 64 , 64 ,
k e r n e l s i z e =3, s t r i d e =1, padding=1)

23 s e l f . conv7 2 = nn . Conv2d (64 , 64 ,
k e r n e l s i z e =3, s t r i d e =1, padding=1)

24

25 s e l f . conv8 1 = nn . Conv2d(64 + 32 , 32 ,
k e r n e l s i z e =3, s t r i d e =1, padding=1)

26 s e l f . conv8 2 = nn . Conv2d (32 , 32 ,
k e r n e l s i z e =3, s t r i d e =1, padding=1)

27

28 s e l f . bn7 1 = nn . BatchNorm2d (64)
29 s e l f . bn7 2 = nn . BatchNorm2d (64)
30

31 s e l f . bn8 1 = nn . BatchNorm2d (32)
32 s e l f . bn8 2 = nn . BatchNorm2d (32)
33

34 s e l f . norm1 = L2Norm(512)
35 s e l f . norm2 = L2Norm(256)

36 s e l f . norm3 = L2Norm(128)
37 s e l f . norm4 = L2Norm(64)
38 s e l f . norm5 = L2Norm(32)
39

40 de f forward (s e l f , x , x 1 , x 2 , x 3 , x 4 ,
enhance v1 , enhance , batch , kd f l a g = 0) :

41

42 enhance v1 = enhance v1 . view (batch ,
−1, enhance v1 . s i z e (1) , enhance v1 . s i z e (2)
, enhance v1 . s i z e (3))

43 enhance v1 = enhance v1 . permute (0 , 2 ,
1 , 3 , 4) . cont iguous ()

44 enhance v1 = enhance v1 . permute (0 , 2 ,
1 , 3 , 4) . cont iguous ()

45 enhance v1 = enhance v1 . view (−1 ,
enhance v1 . s i z e (2) , enhance v1 . s i z e (3) ,
enhance v1 . s i z e (4)) . cont iguous ()

46

47 guide v1 = torch .max(F . r e l u (s e l f .
gu ide v1 bn (s e l f . gu ide v1 (enhance v1))) ,
dim=1, keepdim=True) [0]

48 guide = torch .max(F . r e l u (s e l f . guide bn
(s e l f . guide (enhance))) , dim=1, keepdim=
True) [0]

49 x 3 gu ide = guide ∗ x 3
50

51 x 5 = F. r e l u (s e l f . bn5 1 (s e l f . conv5 1 (
torch . cat ((s e l f . norm1(F . i n t e r p o l a t e (x 4 ,
s c a l e f a c t o r =(2 , 2))) , s e l f . norm2(
x 3 gu ide) , s e l f . norm2 (enhance)) , dim=1)))
)

52 x 5 = F. r e l u (s e l f . bn5 2 (s e l f . conv5 2 (
x 5)))

53

54 x 2 = x 2 . view (batch , −1, x 2 . s i z e (1) ,
x 2 . s i z e (2) , x 2 . s i z e (3))

55 x 2 = x 2 . permute (0 , 2 , 1 , 3 , 4) .
cont iguous ()

56 x 2 = x 2 . permute (0 , 2 , 1 , 3 , 4) .
cont iguous ()

57 x 2 = x 2 . view (−1 , x 2 . s i z e (2) , x 2 .
s i z e (3) , x 2 . s i z e (4)) . cont iguous ()

58

59 x 2 gu ide = guide v1 ∗ x 2
60

61 x 6 = F. r e l u (s e l f . bn6 1 (s e l f . conv6 1 (
torch . cat ((s e l f . norm2(F . i n t e r p o l a t e (x 5 ,
s c a l e f a c t o r =(2 , 2))) , s e l f . norm3(
x 2 gu ide) , s e l f . norm3 (enhance v1)) , dim
=1))))

62

63 x 6 = F. r e l u (s e l f . bn6 2 (s e l f . conv6 2 (
x 6)))

64

65 x 1 = x 1 . view (batch , −1, x 1 . s i z e (1) ,
x 1 . s i z e (2) , x 1 . s i z e (3))

66 x 1 = x 1 . permute (0 , 2 , 1 , 3 , 4) .
cont iguous ()

67 x 1 = x 1 . permute (0 , 2 , 1 , 3 , 4) .
cont iguous ()

68 x 1 = x 1 . view (−1 , x 1 . s i z e (2) , x 1 .
s i z e (3) , x 1 . s i z e (4)) . cont iguous ()

69

70 x 7 = F. r e l u (s e l f . bn7 1 (s e l f . conv7 1 (
torch . cat ((s e l f . norm3(F . i n t e r p o l a t e (x 6 ,
s c a l e f a c t o r =(2 , 2))) , s e l f . norm4(x 1)) ,
dim=1))))

71 x 7 = F. r e l u (s e l f . bn7 2 (s e l f . conv7 2 (
x 7)))

72

73

74 x = x . view (batch , −1, x . s i z e (1) , x .
s i z e (2) , x . s i z e (3))

75 x = x . permute (0 , 2 , 1 , 3 , 4) .
cont iguous ()

76 x = x . permute (0 , 2 , 1 , 3 , 4) .
cont iguous ()

77 x = x . view (−1 , x . s i z e (2) , x . s i z e (3) , x
. s i z e (4)) . cont iguous ()

78

79 x 8 = F. r e l u (s e l f . bn8 1 (s e l f . conv8 1 (
torch . cat ((s e l f . norm4(F . i n t e r p o l a t e (x 7 ,
s c a l e f a c t o r =(2 , 2))) , s e l f . norm5(x)) , dim
=1))))

80 r e s x = F. r e l u (s e l f . bn8 2 (s e l f . conv8 2
(x 8)))

81

82 r e turn r e s x
83

84 c l a s s L2Norm(nn . Module) :
85 de f i n i t (s e l f , n channels , s c a l e =10.0)

:
86 super (L2Norm , s e l f) . i n i t ()
87 s e l f . n channe l s = n channe l s
88 s e l f . s c a l e = s c a l e
89 s e l f . eps = 1e−10
90 s e l f . weight = nn . Parameter (torch .

Tensor (s e l f . n channe l s))
91 s e l f . weight . data ∗= 0.0
92 s e l f . weight . data += s e l f . s c a l e
93

94 de f forward (s e l f , x) :
95 norm = x . pow(2) . sum(dim=1, keepdim=

True) . s q r t () + s e l f . eps
96 x = x / norm ∗ s e l f . weight . view (1 , −1,

1 , 1)
97

98 r e turn x

Listing 6. MGFE code

5. Detailed information of Interpolation

We utilize the main architecture of ADP-C[7] as our
interpolate function in entropy-CS module. We assume
the input feature as f in ∈ R

K,K,C and suppose the
pixels of the f in are indexed by p. Then, we form a
mask M ∈ R

K,K :

M(p) =

{
0, if f in(p) = 0

1, otherwise
(4)

Assuming C is a convolution layer with input f in,
the by applying the mask, the output fout at position
p becomes:

fout(p) =

{
C(f in)(p), if M(p) = 1,

0, if M(p) = 0.
(5)

Denoting the interpolation operation as I, the final
output feature f∗

out is:

UMC Early Fusion Where2comm V2VNet DiscoNet

Figure 5. Detection results of UMC, Early Fusion, Where2comm, V2VNet and DiscoNet on OPV2V dataset.

UMCUMC Early FusionEarly Fusion When2comWhen2com V2VNetV2VNet DiscoNetDiscoNet

Figure 6. Detection results of UMC, Early Fusion, When2com[5], V2VNet and DiscoNet on V2X-Sim dataset.

f∗
out(p) =

{
fout(p), if M(p) = 1,

I(fout)(p), if M(p) = 0.
(6)

The value of I(fout)(p) is weighted average of all
the neighboring pixels centered at p within a radius r:

I(fout)(p) =

∑
s∈Ψ(p) W (p,s)fout(s)∑

s∈Ψ(p) W (p,s)
(7)

where s indicates p’s neighboring pixels and Ψ(p) =
{s|‖s − p‖∞ � r, s
= p}, the neighborhood of p. In
UMC, we set radius r = 7. W(p,s) is the weight as-
signed to point s for interpolating at p, for which we
utilize the RBF kernel, a distance-based exponential
decaying weighting scheme:

W (p,s) = exp(−λ2‖p− s‖22) (8)
with λ being a trainable parameter. This indicates

that the closer s is to p, the larger its assigned weight
will be. Note that masked-out features M(p) = 0 still
participate in the interpolation process as inputs with
values of 0.

6. Detailed Qualitative results

We visualize the detection results between dif-
ferent collaborative approaches on V2X-sim[2] and
OPV2V[12] datasets, as shown in Figure 5 and 6.

7. Loss curve

We visualize the loss curve of UMC, Early Fusion,
When2com, Where2comm, V2VNet and DiscoNet on
V2X-Sim and OPV2V on Figure 7 and 8, respectively.

Epoch

Lo
ss

Figure 7. Epoch vs. loss on V2X-Sim dataset.

References

[1] Yue Hu, Shaoheng Fang, Zixing Lei, Yiqi Zhong, and
Siheng Chen. Where2comm: Communication-efficient
collaborative perception via spatial confidence maps.
In Thirty-sixth Conference on Neural Information Pro-
cessing Systems (Neurips), November 2022. 2, 3

[2] Yiming Li, Dekun Ma, Ziyan An, Zixun Wang, Yiqi
Zhong, Siheng Chen, and Chen Feng. V2x-sim: Multi-
agent collaborative perception dataset and benchmark

Epoch

Lo
ss

Figure 8. Epoch vs. loss on OPV2V dataset.

for autonomous driving. IEEE Robotics and Automa-
tion Letters, 7:10914–10921, 2022. 9

[3] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen,
Chen Feng, and Wenjun Zhang. Learning distilled
collaboration graph for multi-agent perception. In
NeurIPS, 2021. 3

[4] Yiming Li, Juexiao Zhang, Dekun Ma, Yue Wang, and
Chen Feng. Multi-robot scene completion: Towards
task-agnostic collaborative perception. In 6th Annual
Conference on Robot Learning, 2022. 3

[5] Yen-Cheng Liu, Junjiao Tian, Nathan Glaser, and
Zsolt Kira. When2com: Multi-agent perception via
communication graph grouping. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 4105–4114, 2020. 3, 8

[6] Yen-Cheng Liu, Junjiao Tian, Chih-Yao Ma, Nathan
Glaser, Chia-Wen Kuo, and Zsolt Kira. Who2com:
Collaborative perception via learnable handshake com-
munication. 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 6876–6883,
2020. 3

[7] Zhuang Liu, Zhiqiu Xu, Hung-Ju Wang, Trevor Dar-
rell, and Evan Shelhamer. Anytime dense prediction
with confidence adaptivity. International Conference
on Learning Representations (ICLR), 2022. 7

[8] Tsun-Hsuan Wang, Sivabalan Manivasagam, Ming
Liang, Binh Yang, Wenyuan Zeng, James Tu, and
Raquel Urtasun. V2vnet: Vehicle-to-vehicle communi-
cation for joint perception and prediction. In ECCV,
2020. 3

[9] Pengxiang Wu and Siheng Chen. Motionnet: Joint
perception and motion prediction for autonomous
driving based on bird’s eye view maps. In IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 11382–11392, June 2020. 2, 5

[10] Runsheng Xu, Zhengzhong Tu, Hao Xiang, Wei Shao,
Bolei Zhou, and Jiaqi Ma. Cobevt: Cooperative bird’s
eye view semantic segmentation with sparse transform-
ers. In Conference on Robot Learning (CoRL), 2022.
3

[11] Runsheng Xu, Hao Xiang, Zhengzhong Tu, Xin Xia,
Ming-Hsuan Yang, and Jiaqi Ma. V2x-vit: Vehicle-to-
everything cooperative perception with vision trans-
former. ArXiv, abs/2203.10638, 2022. 3

[12] Runsheng Xu, Hao Xiang, Xin Xia, Xu Han, Jin-
long Li, and Jiaqi Ma. Opv2v: An open benchmark
dataset and fusion pipeline for perception with vehicle-
to-vehicle communication. In ICRA, 2022. 3, 9

