
Supplementary to UniTR: A Unified and Efficient Multi-Modal Transformer for
Bird’s-Eye-View Representation

In our supplementary material, we offer in-depth insights
into our network architecture, training methodologies, and
ablation baselines, which can be found in Section A. More-
over, we present an extensive examination of our robustness
experiments in Section B. Lastly, we address the limitations
of UniTR in Section C.

A. Implementation Details

A.1. Network Architecture

Tokenizers. In outdoor perception scenarios, we consider
two input modalities: multi-view camera images and Li-
DAR point clouds. For image inputs, we first take the
raw images XI ∈ R6×256×704×3 captured by six cam-
eras and split them into non-overlapping patches using a
patch-splitting module, similar to ViT [5]. Each patch
serves as a ”token” with its feature being a concatenation
of raw pixel RGB values. In our implementation, we em-
ploy an 8 × 8 patch size, resulting in a feature dimension
of 8 × 8 × 3 = 192. A linear embedding layer is then
applied to these features, projecting them to an arbitrary di-
mension denoted as C. The output of the image tokenizer
is T I ∈ RM×C , where M represents the token number.

Regarding LiDAR point clouds XP , we utilize the stan-
dard dynamic voxel feature encoding tokenizer [12] as im-
plemented by OpenPCDet [10]. We use a grid size of
(0.3m, 0.3m, 8.0m) for detection and (0.4m, 0.4m, 8.0m)
for segmentation to generate LiDAR voxels, T P ∈ RN×C .
By employing these two tokenizers, the multi-modal in-
puts can be converted to T ∈ R(M+N)×C , which includes
N point cloud tokens and M image tokens for subsequent
intra-modal transformer blocks.
Multi-modal Backbone. Our UniTR features a single-
stride, pillar-based multi-modal backbone that starts with
one weight-sharing intra-modal transformer block for paral-
lel processing of modal-wise representation learning. Sub-
sequently, three inter-modal transformer blocks bridge dif-
ferent modalities and establish connections among them
by alternating between 2D and 3D partitioning configura-
tions. The block configuration adopted in this paper is
{intra, inter2D, inter2D, inter3D}. The window sizes for
both LP × WP × HP and LI × W I × 1 are (30, 30, 1),

and the maximum number of tokens assigned to each set
(τ ) is set to 90 for all modalities. All attention modules are
equipped with 8 heads, 128 input channels, and 256 hidden
channels. For the inter-modal block (3D), the pseudo grid
points size, LS ×WS ×HS , is set to 360× 360× 20.

A.2. Ablation Baselines

Effect of 2D & 3D fusion. The base competitor is the lidar-
only variant of our model with four intra-modal blocks [11]
and transfusion head [1]. For a fair comparison, we only
switch the fusion algorithm while keeping all other settings
remain unchanged. The number of the intra- and inter-
modal blocks is summarized in Table 1.

Modality Intra-B Inter-B (2D) Inter-B (3D) BEVLSS NDS mAP

L 4 0 0 70.5 65.9
C+L 3 0 1 72.0 68.5
C+L 3 1 0 72.5 69.0
C+L 2 1 1 72.9 69.8
C+L 1 2 1 73.1 70.0
C+L 1 2 1 ✓ 73.3 70.5

Table 1. The number of the intra- and inter-modal blocks on the
ablation of 2D & 3D fusion. Camera (C), LiDAR (L).

Effect of parallel intra-modal transformer block. The
1st and 2nd rows are the image-only and lidar-only base-
lines with four intra-modal blocks. To evaluate the effec-
tiveness of our weight-sharing approach, we conducted ex-
periments with both serial and parallel multi-modal vari-
ants, where only a BEV unifier was used without our pro-
posed 2D&3D fusion strategies. This allowed us to bet-
ter isolate the impact of the weight-sharing approach on its
own, separate from the strong fusion strategies. All latency
measurements are taken on the same workstation with an
A100 GPU. Note that the latency reported in Table 4 of the
main paper only refers to the transformer backbone, without
including the modality-specific tokenizers and partitioning.

A.3. Training Schemes

As stated in the main paper, previous approaches for
multi-modal fusion usually involve two-step training strate-
gies with separate single-modal pre-training and joint multi-
modal post-training for fusion. In contrast, our UniTR
can be directly trained with a one-step end-to-end training
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scheme, where the data augmentations of the image and li-
dar are aligned. We follow the matching strategies of BEV
and image space data augmentation used in BEVFusion [8],
e.g., random rotation, translation, and flip. To synchronize
2D-3D joint GT-AUG, we use the same implementation of
cross-modal copy-paste proposed in [3] with a Mix-up Ra-
tio α = 0.7 and add fade strategy at the last two epochs. Our
UniTR backbone is pre-trained on both ImageNet [4] and
nuImage [2] datasets. We train all experiments using the
AdamW optimizer [9] on 8 A100 GPUs with weight decay
0.03, a one-cycle learning rate policy [6], and a maximum
learning rate of 3e-3. For 3D object detection, we used a
batch size of 24 and trained for 10 epochs, while for BEV
map segmentation, we used a batch size of 24 and trained
for 20 epochs. All inference times were measured on the
same workstation (single A100 GPU and AMD EPYC 7513
CPU).

B. Robustness Against Sensor Failure
B.1. LiDAR Malfunctions.

To assess the robustness of our framework, we conducted
experiments on the nuScenes validation set under condi-
tions where objects cannot reflect LiDAR points. Such sit-
uations may arise during rainy weather when the reflection
rate of certain common objects falls below the LiDAR sys-
tem’s threshold. To simulate this scenario, we employed the
same dropping strategy as [7]: each frame has a 50% chance
of dropping objects, and each object has a 50% chance of
dropping the LiDAR points it contains.

As shown in the main paper, our UniTR outperforms
both the LiDAR-only stream and previous fusion ap-
proaches, such as BEVFusion [7], in terms of accuracy
when detectors are evaluated without robustness augmenta-
tion. Furthermore, our method exhibits significant improve-
ments when the detectors are fine-tuned on the robust aug-
mented training set, outpacing BEVFusion by a substantial
margin.

B.2. Camera Malfunctions.

We performed additional experiments to evaluate the ro-
bustness of our UniTR backbone against camera malfunc-
tions in three scenarios outlined in [7]: i) missing front cam-
era, ii) missing all cameras except the front, and iii) 50% of
camera frames stuck. As demonstrated in the main paper,
UniTR surpasses other LiDAR-camera fusion methods and
even camera-only methods in these scenarios, showcasing
its resilience against camera malfunctions.

C. Limitation
Despite its notable performance and processing speed in

multi-modal 3D perception, our UniTR has certain limi-
tations that warrant attention. First, as it inherits features

from DSVT, UniTR is primarily a single-stride backbone
designed for outdoor BEV perception, which constrains its
adaptability to various other 3D perception tasks, such as
indoor 3D perception. Second, UniTR is mainly focused
on jointly processing different sensor types without con-
sidering the compatibility of transformation modalities for
diverse scenarios. For instance, it does not accommodate
switching to LiDAR-only, image-only, or image-LiDAR en-
coders during the inference stage. The design of a more
modality-flexible backbone utilizing a Mixture-of-Experts
approach remains an open challenge for the 3D perception
community.
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