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Our supplementary material consists of:

(1) Additional Quantitative Results

(2) Additional Qualitative Results

(3) Method Details

1. Additional Quantitative Results
In this section, we report additional quantitative results

for our UCOFIA model. First, we report the results with
full video-text retrieval metrics (including video-to-text re-
trieval) on MSR-VTT, ActivityNet, and DiDeMo. Re-
sults indicate our UCOFIA model achieves better results on
both text-to-video and video-to-text retrieval compared to
the current state-of-the-art CLIP-based approaches. Mean-
while, we show UCOFIA is capable of adapting to other
advanced backbone model. Then, we compare the perfor-
mance and computational cost of UCOFIA with previous
work and validate our methods accomplish significant im-
provement with limited additional computation. Lastly, we
ablate the different training settings for encoders and the
model design of our bi-directional ISA module (Bi-ISA).

1.1. Results with Full Metrics

In this section, we report the video-text retrieval results
on MSR-VTT [19], ActivityNet [9] and DiDeMo [1] with
full video-text retrieval metrics, including the results on
video-to-text retrieval setting.
MSR-VTT. As shown in Table 9, UCOFIA achieves state-
of-the-art results on most metrics. Specifically, compared to
the most recent multi-level alignment method X-CLIP [15],
UCOFIA achieves a 3.3% gain on text-to-video R@1 met-
ric and obtains comparable results on video-to-text retrieval
metrics. Compared to another recent state-of-the-art CLIP-
based method TS2-Net [13], our model gets 2.4% and 1.8%
improvement on R@1 metric for text-to-video and video-to-
text retrieval. These results verify the effectiveness of the
UCOFIA model. Moreover, replacing the visual backbone

(ViT-32) with a larger model (ViT-16) would improve the
model performance, especially on video-to-text retrieval.

ActivityNet. As shown in Table 10, UCOFIA outperforms
the current state-of-the-art CLIP-based methods on a wide
range of metrics on ActivityNet benchmark [9]. Concretely,
our model achieves 1.4% and 2.4% gain on the R@1 met-
ric on text-to-video and video-to-text retrieval compared to
the state-of-the-art approaches. This indicates our UCOFIA
model is capable of tackling long video retrieval, thus vali-
dating the generalization ability of our method.

DiDeMo. As shown in Table 11, compared to the current
state-of-the-art models, UCOFIA achieves better results on
most evaluation metrics. Specifically, our model outper-
forms the recent state-of-the-art CLIP-based approach X-
CLIP [15] with a significant margin of 1.3% on text-to-
video R@1 and 2.9% on video-to-text R@1.

1.2. Adapt UCOFIA to Other Backbone Model

In this section, we apply UCOFIA to the recent CLIP-
ViP’s [20] backbone model, which is a video-text model
pretrained on 100M video-text pairs. As shown in Table 12,
UCOFIA improves the backbone CLIP-ViP model on all
metrics on the MSR-VTT text-to-video retrieval task. This
indicates that our method is able to generalize to a more
advanced backbone model and verifies the robustness of our
method.

1.3. The Computational Cost of UCOFIA

In this section, we compare our model with the recent X-
CLIP model [15] on the balance of model performance and
computational cost in Table 13. Results show that UCOFIA
is 3.3% better than X-CLIP on text-to-video retrieval on
MSR-VTT dataset while only requiring 1.2% additional pa-
rameters and 1.4 GB memory per GPU (train on 4 GPUs).
Therefore, UCOFIA achieves significant improvement with
limited additional computational cost compared to previous
works.



Method Text→ Video Video→ Text
R@1 R@5 R@10 MdR↓ MnR↓ R@1 R@5 R@10 MdR↓ MnR↓

CE [12] 20.9 48.8 62.4 6.0 28.2 20.6 50.3 64.0 5.3 25.1
MMT [7] 26.6 57.1 69.6 4.0 24.0 27.0 57.5 69.7 3.7 21.3

Support set [17] 27.4 56.3 67.7 3.0 - 26.6 55.1 67.5 3.0 -
Frozen [2] 31.0 59.5 70.5 3.0 - - - - - -
HiT [11] 30.7 60.9 73.2 2.6 - 32.1 62.7 74.1 3.0 -

TT-CE [5] 29.6 61.6 74.2 3.0 - 32.1 62.7 75.0 3.0 -
CLIP-straight [18] 31.2 53.7 64.2 4.0 - 27.2 51.7 62.6 5.0 -

CLIP4Clip [14] 44.5 71.4 81.6 2.0 15.3 42.7 70.9 80.6 2.0 11.6
CAMoE [4] 44.6 72.6 81.8 2.0 13.3 45.1 72.4 83.1 2.0 10.0
X-pool [8] 46.9 72.8 82.2 2.0 14.3 - - - - -

X-CLIP [15] 46.1 73.0 83.1 2.0 13.2 46.8 73.3 84.0 2.0 9.1
TS2-Net [13] 47.0 74.5 83.8 2.0 13.0 45.3 74.1 83.7 2.0 9.2

UCOFIA(ViT-32) 49.4 72.1 83.5 2.0 12.9 47.1 74.3 83.0 2.0 11.4
UCOFIA(ViT-16) 49.8 74.6 83.5 2.0 13.3 49.1 77.0 83.8 2.0 11.2

Table 9. Comparison to the state-of-the-art video-text retrieval methods on MSR-VTT. The top section shows the results of non-CLIP
methods and the middle section shows the results of CLIP-based methods. The bottom section shows the UCOFIA performance on
different size of backbone. For fair comparison, we highlight the best results of each metric using the same backbone model (ViT-32).

Method Text→ Video Video→ Text
R@1 R@5 R@10 MdR↓ MnR↓ R@1 R@5 R@10 MdR↓ MnR↓

CE [12] 18.2 47.7 91.4 6.0 23.1 17.7 46.6 - 6.0 24.4
MMT [7] 28.7 61.4 94.5 3.3 16.0 28.9 61.1 - 4.0 17.1

Support set [17] 29.2 61.6 94.7 3.0 - 28.7 60.8 - 2.0 -
TT-CE [5] 23.5 57.2 96.1 4.0 - 23.0 56.1 - 4.0 -

CLIP4Clip [14] 40.5 72.4 98.2 2.0 7.5 42.5 74.1 85.8 2.0 6.6
TS2-Net [13] 41.0 73.6 84.5 2.0 8.4 - - - - -
X-CLIP [15] 44.3 74.1 - - 7.9 43.9 73.9 - - 7.6

UCOFIA(ours) 45.7 76.6 86.6 2.0 6.4 46.3 76.5 86.3 2.0 6.7
Table 10. Video-text retrieval results on ActivityNet.

1.4. Different Training Settings for Encoders

In this section, we show the performance of UCOFIA
under different training settings for encoders. Our ap-
proach attains 47.1%, 49.4%, 43.8% R@1 on text-to-video
retrieval on MSR-VTT dataset when using 1e−6, 1e−7
and 0 (frozen) learning rates for the encoders, respectively.
We conjecture that CLIP is pretrained on very large-scale
image-text pairs (400M) and thus we only need to slightly
adjust its parameters for downstream tasks, which is also
observed by many previous works (CLIP4Clip, X-CLIP).

1.5. Additional Ablation Study for Bi-ISA

In the main paper, we mention that empirically we find
that jointly considering two directions of patch-word matrix
aggregation (patch-then-word and word-then-patch) pro-
vides better aggregation for the patch-word matrix. In Ta-
ble 14, we compare our bi-directional solution with single-
directional methods on MSR-VTT dataset. For better com-
parison, we do not apply the Sinkhorn Knopp algorithm to
normalize the retrieval similarities. Results show that lever-

aging both aggregation directions achieves better results,
validating the effectiveness of our Bi-ISA design.

2. Additional Qualitative Results

In this section, we provide additional qualitative results
of UCOFIA. First, we visualize the imbalanced retrieval re-
sults and show how our unification module mitigates this
issue. Then, we visualize the video samples retrieved by
methods focusing on different alignment levels to validate
the effectiveness of our coarse-to-fine alignment design.

2.1. Visualization of Imbalanced Retrieval

As discussed in the main paper, we find that scores
across different videos are highly imbalanced in the similar-
ity matrices of each level. As a result, the video candidate
could be over-/under-represented by the retrieval model due
to the imbalanced summation of retrieval similarities. As
shown in Figure 5, the left part denotes the video candi-
dates haven’t been retrieved in the inference stage which
corresponds to under-representative. The right part de-



Method Text→ Video Video→ Text
R@1 R@5 R@10 MdR↓ MnR↓ R@1 R@5 R@10 MdR↓ MnR↓

CE [12] 16.1 41.1 - 8.3 43.7 15.6 40.9 - 8.2 42.4
ClipBERT [10] 20.4 48.0 60.8 6.0 - - - - - -

TT-CE [5] 34.6 65.0 74.7 3.0 - 21.1 47.3 61.1 6.3 -
Frozen [2] 21.6 48.6 62.9 6.0 - - - - - -

CLIP4Clip [14] 43.4 70.2 80.6 2.0 17.5 42.5 70.6 80.2 2.0 11.6
TS2-Net [13] 41.8 71.6 82.0 2.0 14.8 - - - - -
X-CLIP [15] 45.2 74.0 - - 14.6 43.1 72.2 - - 10.9

UCOFIA(ours) 46.5 74.8 84.4 2.0 13.4 46.0 71.9 81.5 2.0 12.1
Table 11. Video-text retrieval results on DiDeMo.

Methods R@1 R@5 R@10
CLIP-ViP [20] 50.1 74.8 84.6

UCOFIA with CLIP-ViP 51.3 75.1 85.2
Table 12. Text-to-video retrieval results on MSR-VTT dataset un-
der CLIP-ViP backbone model.

Model R@1 Param (M) ↓ Mem (GB) ↓
X-CLIP [15] 46.1 164 12.5

UCOFIA(ours) 49.4 166 13.9
Table 13. The comparison of performance (text-to-video retrieval
on MSR-VTT) and computational cost (model parameters and
memory) between X-CLIP and UCOFIA(ours).

Patch-then-word Word-then-patch R@1 R@5 MnR↓
✓ 47.8 72.8 13.4

✓ 47.7 72.9 13.5
✓ ✓ 48.2 73.3 13.2

Table 14. The effect of leveraging both aggregation directions
(patch-then-word and word-then-patch) for patch-word matrix ag-
gregation on MSR-VTT dataset. The last row is our design.

notes the video candidates have been retrieved more than
twice (including twice) in the inference stage which cor-
responds to over-representative. The middle part denotes
the video candidates have been retrieved once, which is the
ideal situation. The blue column in Figure 5 represents the
model without the Sinkhorn Knopp algorithm. The results
show that only 43% video candidates are retrieved once in
the inference stage while 34% video candidates are under-
represented and 23% video candidates are over-represented.
After applying the Sinkhorn Knopp algorithm in the unifi-
cation module (the orange column in Figure 5), the under-
representative issue is mitigated and more than 50 under-
represented video candidates have been re-scaled and re-
trieved by the model. Meanwhile, we also observe a slight
reduction in the number of over-represented videos. In all,
the Sinkhorn Knopp algorithm in the unification module in-
deed mitigates the over- and under-representation issue in
the inference stage.
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Figure 5. The visualization of imbalanced retrieval results. The
left part denotes the video candidates haven’t been retrieved in
the inference stage (under-representative). The middle part de-
notes the video candidates have been retrieved once in the infer-
ence stage. The right part denotes the video candidates have been
retrieved more than twice (including twice) in the inference stage
(over-representative). The blue column represents the model with-
out the Sinkhorn Knopp algorithm and the orange column repre-
sents the full UCOFIA model. Results show that about 50 under-
represented videos have been re-scaled and retrieved by the videos
via the SK algorithm (from the left bar to the middle bar).

2.2. Comparison of Different Alignments

As discussed in the main paper, our coarse-to-fine align-
ment module captures comprehensive cross-modal clues
compared to coarse-grained or fine-grained alignment. We
provide more visualization results in Figure 7. For the first
text query (on the first row of Figure 7), the coarse-grained
alignment only captures the scene of “singing” and the fine-
grained alignment only focuses on the object “guitar”. For
the second text query (on the second row of Figure 7), the
coarse-grained alignment only considers the scene informa-
tion like “driving”, and “video game” while the fine-grained
alignment only captures the detail information “motorcy-
cle”. For the last text query (on the last row of Figure 7),



Query: a man is playing a guitar with a band in a live concert

Coarse + Fine-grained Coarse-grained Only Fine-grained Only

Query: a man drives a motorcycle in a video game

Query: a man runs into the crowd when trying to catch a basketball

Figure 6. The visualization of different alignments. The left part is the correctly retrieved video by our coarse-to-fine alignment module.
The middle part is the wrongly retrieved video by coarse-grained alignment and the right part is the wrongly retrieved video by fine-grained
alignment.
Figure 7. The visualization of different alignments. The left part is the correctly retrieved video by our coarse-to-fine alignment module.
The middle part is the wrongly retrieved video by coarse-grained alignment and the right part is the wrongly retrieved video by fine-grained
alignment.

the coarse-grained alignment overlooks the detailed infor-
mation “basketball” and the fine-grained alignment ignores
the scene of “crowd” and the action of “run into”. To sum
up, the coarse-grained or fine-grained alignment could over-
look some crucial cross-modal clues while our coarse-to-
fine alignment is capable of capturing both high-level and
detailed information and retrieving the correct video candi-
date.

3. Method Details
In this section, we present more details of UCOFIA.

First, we discuss the patch selection module. Then, we
present details of the Sinkhorn-Knopp Algorithm that nor-
malizes the similarity matrix for unification.

3.1. Patch Selection Module

As discussed in the main paper, due to the high redun-
dancy of patch tokens, inspired by [13], we propose a patch
selection module to choose the top-K salient patches from
each frame for patch-word alignment. Here we present the
details of the patch selection module.

Specifically, given the patch feature for the n-th frame
pn, where pn = Fv (Fn) ∈ RM×C , M denotes the num-

ber of the visual patches within a video, we select the top-
K salient token out of the M tokens of the frame. To al-
low each patch to be aware of the information of the whole
frame, we first concatenate the frame feature f ∈ RC with
each patch feature and leverage an MLP layer to fuse the
global (frame) and local (patch) information, and leverage
an MLP layer Ga to obtain the frame-augmented patch in-
formation to mitigate the influence of irrelevant background
patches. Then, to avoid the selection module only consider-
ing the frame information and deviating from the informa-
tion of the original video, we further concatenate the frame-
augmented patch information with the video representation
v and apply another MLP layer Gb to obtain a saliency score
U for each patch. The whole process can be denoted as:

U = Gb (Concat (Ga (Concat (pn, f)) , v)) . (1)

Then, according to the saliency score U , we select the
indices of K most salient patches within a video frame
ind ∈ {0, 1}K . Through this one-hot vector ind, we ex-
tract the top-K salient patch by

p̂ = indT p, (2)

where p̂n ∈ RK×C denotes the selected patch representa-



Algorithm 1 Sinkhorn-Knopp algorithm
function SINKHORN-KNOPP(S, niter)

L = S. exp()
β = 1 /L.sum(dim = 0)
for i in range(niter) do

α = 1 / (L @ β)
β = 1 / (α @ L)

end for
α← α. log()
return α

end function

tion for the whole video. We concatenate the selected patch
feature from all N frames and obtain the selected patch fea-
ture p̂ ∈ RLv×C , where Lv = N ∗K. Note that the direct
top-K patch selection is non-differentiable, in practice, to
make the patch selection module differentiable, we apply
the perturbed maximum method proposed in [3].

3.2. Sinkhorn-Knopp Algorithm

As discussed in the main paper, inspired by [16], we
utilize the Sinkhorn-Knopp algorithm [6] to normalize the
similarity scores for each granularity and make sure the
marginal similarities (the sum of retrieval similarities be-
tween one specific video and all texts) for different videos
are almost identical, so that each video has a fair chance to
be selected. Below, we discuss the algorithm in detail.

Recall that our goal is to compute the video bias using
the testing video set (G videos) and the training text set (H
queries). Given the similarity matrix S ∈ RG×H , we lever-
age the Algorithm 1 to compute the video bias α ∈ RG in
an iterative manner (the number of iterations niter = 4 for
all datasets). The fixed-point iteration process allows the
model to find the optimal value of α with minimum cost.
We further add the α to the similarity logits to re-scale the
similarity matrix to normalize the marginal similarity of ev-
ery video to be a similar value.
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[18] Jesús Andrés Portillo-Quintero, José Carlos Ortiz-Bayliss,
and Hugo Terashima-Marı́n. A straightforward framework
for video retrieval using clip. In Pattern Recognition: 13th
Mexican Conference, MCPR 2021, Mexico City, Mexico,
June 23–26, 2021, Proceedings, pages 3–12. Springer, 2021.
2

[19] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large
video description dataset for bridging video and language. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5288–5296, 2016. 1

[20] Hongwei Xue, Yuchong Sun, Bei Liu, Jianlong Fu, Ruihua
Song, Houqiang Li, and Jiebo Luo. Clip-vip: Adapting pre-
trained image-text model to video-language representation
alignment. arXiv preprint arXiv:2209.06430, 2022. 1, 3


