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In this supplementary material, we provide more experi-
mental details and more experimental results (i.e. per-class
performance) on one-class CIFAR-100 (20 super-classes)
and ImageNet-30, as well as more analysis on distribution-
shifting/identity-preserving augmentations.

1. Experimental Details
Hierarchical Augmentation. We employ HA along

the network to further prompt a higher concentration of
inliers, in which deeper residual stages address stronger
data augmentations. Following [2], we use the combina-
tion of random resized crop, color jittering, gray-scale and
horizontal flip with increasing augmentation strengths for
Ti (i = 1, 2, 3, 4) to generate positive views. Table A shows
the detailed augmentation configurations.

Table A: Augmentation configurations for Ti (i =
1, 2, 3, 4). RRC,CJ,GS,HF are short for random resized
crop, color jittering, gray-scale and horizontal flip, respec-
tively. RRC(i, j) specifies the range of the cropped area
and CJ(b, c, s, h) specifies the range of brightness, con-
trast, saturation and hue.

T1 RRC(0.75, 1), CJ(0.1, 0.1, 0.1, 0.025), GS,HF
T2 RRC(0.54, 1), CJ(0.2, 0.2, 0.2, 0.050), GS,HF
T3 RRC(0.30, 1), CJ(0.3, 0.3, 0.3, 0.075), GS,HF
T4 RRC(0.08, 1), CJ(0.4, 0.4, 0.4, 0.100), GS,HF

An extra projection head gi is additionally attached at the
end of resi to down-sample and project the feature maps
with the same shape as in the last stage res4. Similar to
[10], each gi consists of a series of down-sampling blocks
and projection blocks. Table E shows the detailed network
structure.

*Corresponding author.

Soft Aggregation. In Fig. 1, we display two rows of the
augmented views of inliers induced by standard data aug-
mentation T as in CSI [8]. Notably, some views capture the
main body of planes, whereas others are distracted by the
background. It indicates that the generated views probably
suffer from the semantic shift, and imposing such noisy in-
liers to be close reduces the purity of the inlier distribution.

Outlier Exposure (OE) [4]. OE leverages an auxiliary
dataset as outliers and enables anomaly detectors to gener-
alize well to unseen anomalies. In this paper, we investigate
the 80 Million Tiny Images dataset [9] as the OE dataset
with images from CIFAR-10 removed to make sure that the
OE dataset and CIFAR-10 are disjoint. In practice, we use
300K random images1 and observe that only a small frac-
tion of this dataset is sufficiently effective for AD. Mean-
while, from Table B, we observe the increasing performance
with more outliers exposed. Additionally, in the case of no
OE applied, we vary |Dout| by randomly keeping some in-
liers not being rotated. Tab. B shows that we can benefit
more from a larger size of Dout.

Table B: Ablation w.r.t. OE and |Dout| ratios on CIFAR-10.

0% 25% 50% 75% 100%
|Dout| / 91.3 92.6 94.5 95.4

OE 95.4 95.9 96.2 96.6 96.9

2. Per-class Results on One-class Settings
Tables C and D present the AD results of our UniCon-

HA on one-class CIFAR-100 (20 super-classes) and
ImageNet-30, respectively. Clearly, our method outper-
forms the other state-of-the-art methods [8, 3, 5, 1, 7], which
also utilize transformations to create virtual outliers on most

1https://github.com/hendrycks/outlier-exposure



Table C: Per-class AUROC scores on one-class CIFAR-100 (20 super-classes). Numbers in the first column indicate the
super-class IDs. * denotes the results directly adopted from [8] and bold numbers denote the best results.

OC-SVM* [6] Geom [3] Rot*[5] Rot+Trans*[5] GOAD*[1] DROC [7] CSI [8] UniCon-HA (Ours)
0 68.4 74.7 78.6 79.6 73.9 82.9 86.3 89.8
1 63.6 68.5 73.4 73.3 69.2 84.3 84.8 90.2
2 52.0 74.0 70.1 71.3 67.6 88.6 88.9 94.4
3 64.7 81.0 68.6 73.9 71.8 86.4 85.7 89.5
4 58.2 78.4 78.7 79.7 72.7 92.6 93.7 96.3
5 54.9 59.1 69.7 72.6 67.0 84.5 81.9 87.6
6 57.2 81.8 78.8 85.1 80.0 73.4 91.8 93.0
7 62.9 65.0 62.5 66.8 59.1 84.2 83.9 87.8
8 65.6 85.5 84.2 86.0 79.5 87.7 91.6 94.0
9 74.1 90.6 86.3 87.3 83.7 94.1 95.0 97.1

10 84.1 87.6 87.1 88.6 84.0 85.2 94.0 92.2
11 58.0 83.9 76.2 77.1 68.7 87.8 90.1 90.5
12 68.5 83.2 83.3 84.6 75.1 82.0 90.3 93.4
13 64.6 58.0 60.7 62.1 56.6 82.7 81.5 86.9
14 51.2 92.1 87.1 88.0 83.8 93.4 94.4 97.2
15 62.8 68.3 69.0 71.9 66.9 75.8 85.6 84.2
16 66.6 73.5 71.7 75.6 67.5 80.3 83.0 90.8
17 73.7 93.8 92.2 93.5 91.6 97.5 97.5 98.1
18 52.8 90.7 90.4 91.5 88.0 94.4 95.9 98.0
19 58.4 85.0 86.5 88.1 82.6 92.4 95.2 96.7

Mean 63.1 78.7 77.7 79.8 74.5 86.5 89.6 92.4

Table D: Per-class AUROC scores on one-class ImageNet-30. Numbers in the first and fourth rows indicate the class IDs.
Bold numbers denote the best results.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
CSI [8] 85.9 99.0 99.8 90.5 95.8 99.2 96.6 83.5 92.2 84.3 99.0 94.5 97.1 87.7 96.4

UniCon-HA 87.3 98.7 99.8 93.1 96.4 99.3 97.5 88.4 94.3 89.2 98.9 95.3 97.4 90.0 96.7
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

CSI [8] 84.7 99.7 75.6 95.2 73.8 94.7 95.2 99.2 98.5 82.5 89.7 82.1 97.2 82.1 97.6
UniCon-HA 85.8 99.5 83.9 95.3 79.8 94.5 95.4 98.8 98.7 84.8 89.2 87.1 97.4 86.8 97.9
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Figure 1: Illustration of augmented samples for the Plane
class in CIFAR-10. Figures are from the same mini-batch
during training and ranked according to the descent order
of their ωx. Our soft mechanism enables us to identify the
most likely inliers while suppress the potential outliers for
a purified inlier concentration.

classes.
Though sharing the same spirit of creating virtual out-

Table E: The structure of the projection head gi.

# Down-sampling blocks Projection blocks

g1

SepConv Conv, Conv, BN, ReLU

Linear, ReLU, Linear
Conv, Conv, BN, ReLU
SepConv
SepConv

Conv, BN, ReLU, AvgPool

g2

SepConv
Linear, ReLU, LinearSepConv

Conv, BN, ReLU, AvgPool

g3
SepConv Linear, ReLU, LinearConv, BN, ReLU, AvgPool

g4 AvgPool Linear, ReLU, Linear

liers, we develop a completely different way of exploiting
those outliers. Recall that a good representation distribution
for AD requires: (a) a compact distribution for inliers and



(b) a dispersive distribution for (virtual) outliers. Both the
requirements are only partially considered in the previous
literature [8, 3, 5, 1, 7] with sub-optimal results obtained,
while we explicitly encourage the concentration of inliers
and the dispersion of outliers as our training objective. In-
terestingly, our method is free from any auxiliary branches
to differentiate the specific types of transformations, outside
of the commonly adopted transformation (e.g. rotation) pre-
diction based on a classifier for AD.

3. Analysis on Augmentations
Following CSI [8], we try to remove or convert-to-shift

identity-preserving augmentations T , including random re-
sized crop, color jittering, horizontal flip and gray-scale. Ta-
ble F confirms the observations from CSI: (1) treating T as
distribution-shifting augmentations leads to a sub-optimal
solution as these augmentations shift the original distribu-
tion less than rotation does, increasing false negative sam-
ples; (2) removing any augmentations from T degrades per-
formance, showing the importance of identity-preserving
augmentations to generating diverse positive views, where
random crop is the most influential.

Table F: Ablation study w.r.t. augmentations on CIFAR-10.

Base Crop Color Flip Gray

CSI [8] 94.3 +shift 85.4 87.3 86.2 88.7
-remove 88.0 90.2 93.6 93.7

Ours 95.4 +shift 84.6 90.4 87.4 92.0
-remove 90.8 91.5 94.2 94.9
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