
Appendix

A. Pre-training Details

The statistics of pre-training datasets are presented in Ta-
ble 1. The COCO Captions dataset comprises manually
generated captions where multiple captions are assigned to
each image. For the Visual Genome dataset, the region
description serves as the image caption, yielding several
captions for each image. The SBU Captions and Concep-
tual Caption datasets contain a single caption per image.
It should be noted that a considerable number of the im-
age links in these two datasets have become invalid because
they are collected from the Internet.

COCO VG SBU CC3M

#Images 113K 108K 855K 2.98M
#Captions 567K 5.4M 855K 2.98M

Table 1. Statistics of the pre-training datasets.

The default architecture of ViLTA contains a dual-
encoder architecture (a pre-trained vision encoder and a pre-
trained language encoder) and a multimodal encoder. Ta-
ble 2 reports the hyperparameters used in our pre-training
model. For ViLTABASE, we leverage a 12-layer transformer-
based structure as language/vision encoder and 6-layer for
the multimodal encoder respectively. The number of trans-
former layers for the language and vision encoders is set to
24 for ViLTALARGE. The number of the multimodal encoder
also maintains the default setup of 6-layer transformer-
based structure. Here, we initialize the language encoder
with weights from the pre-trained RoBERTa [9] and the vi-
sion encoder with weights from the pre-trained CLIP-ViT-
224/16 [11].

B. Fine-tuning Details

We fine-tune ViLTA on 5 downstream tasks using the
hyperparameters reported in Table 3 for VL classification
tasks, Table 4 for VL retrieval tasks, Table 5 for image cap-
tioning. In the following sections, we provide a comprehen-
sive description of the fine-tuning configurations employed
for each task.

• Visual Question Answering (VQA) [2] aims to predict a
natural language answer based on the given image and
question. Following the previous works [6, 5, 3, 13],
we treat VQA as a multi-label classification task with
3,129 possible answers. We concatenate the image
representation vcls and text representation wcls ob-
tained from the multimodal model, and then pass it
through a 2-layer MLP layer to perform a classification
task. We use GELU activation function and a binary

Hyperparameters ViLTABASE ViLTALARGE

Total steps 36k 24k
Warmup steps 21.6k 14.4k

Batch size 1024 1024

Learning rate 1e−5 4e−6

Learning rate decay Linear

Weight decay 0.01
Dropout ratio 0.1

AdamW ϵ 1e−8

AdamW β (0.9, 0.98)
Textual encoder RoBERTaBASE RoBERTaLARGE

Visual encoder CLIP-ViT-B-224 CLIP-ViT-L-336
Patch size 16 14

Input resolution 288 224

Number of layers 6 6

Hidden size 768 1024

FFN inner hidden size 3072 4096

Number of attention heads 12 16

Table 2. Hyperparameters for pre-training model. The last block
is the hyperparameters for the multimodal encoder.

cross-entropy loss function on the soft target scores to
optimize the model.

• Visual Reasoning focuses on predicting whether the
caption is true or false for a pair of images. Here, we
employ a pairwise strategy to effectively process the
input in NLVR2 [12] dataset, where each data sample
is divided into (image1, statement) and (image2, state-
ment). We then feed them separately into the model
to obtain two representations and concatenate them to-
gether to pass through a binary classification head.

• Visual Entailment aims to predict whether a natural
language hypothesis is entailed, neutral or contradicted
by the image premise. We train and evaluate our model
on SNLI-VE [14] dataset and treat it as a three-class
classification problem.

• Image-Text Retrieval contains two sub tasks: image-
to-text retrieval (TR) and text-to-image retrieval (IR).
COCO [8] and Flickr30K [10] serve as evaluation
datasets. Following the standard setting in ViLT [6],
We use the pre-trained ITM head, specifically the com-
ponent that calculates the true-pair logits, to initialize
the similarity score head. We then sample 15 random
texts as negative examples and use a cross-entropy loss
that maximizes the scores for positive pairs.

• Image Captioning is a generative task and we inves-
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tigate whether our encoder-only model is suitable for
such generative tasks. To adapt our model for image
captioning, we modify the encoder on the text side
of the model by transforming it into a causal decoder
through the adjustment of the attention mask. Subse-
quently, we fine-tune the model on the COCO Cap-
tions [8] dataset using cross-entropy loss and evaluate
it on the NoCaps [1] dataset without additional train-
ing.

Hyperparameters VQAv2 NLVR2 SNLI-VE

Learning rate 1e−5 1e−5 2e−6

Epochs 10 10 5
Batch size 512 256 64
AdamW ϵ 1e−8

AdamW β (0.9, 0.98)
Weight decay 0.05 0.01 0.01
Dropout ratio 0.1
Input resolution 5762 3842 2882

Table 3. Hyperparameters for fine-tuning ViLTA on VL classifi-
cation tasks.

Hyperparameters COCO Flickr

Learning rate 5e−6

Epochs 10

Batch size 64

AdamW ϵ 1e−8

AdamW β (0.9, 0.98)

Weight decay 0.01

Dropout ratio 0.1

Input resolution 5762

Table 4. Hyperparameters for fine-tuning ViLTA on VL retrieval
tasks.

C. Scaling Ability

To show the effectiveness of ViLTA on extensive
datasets, we expand the training of ViLTA-base and ViLTA-
large on a subset of the LAION-2B and CC12M datasets
employing 64 A100 GPUs in Table 6. The total volume of
data was roughly 150M, comparable to the 129M dataset
used in BLIP. All performance metrics for retrieval tasks
show substantial enhancements, ranging from 73.3 to 80.5
on the COCO dataset for text retrieval in terms of recall@1.
However, the gain in VL understanding (VLU) tasks is not
as prominent as the increase in retrieval tasks, which is con-
sistent with the findings in previous studies [7, 4]. Such

Hyperparameters COCO Captioning

Learning rate 1e−5

Epochs 10
Batch size 512
AdamW ϵ 1e−8

AdamW β (0.9, 0.98)
Weight decay 0.01
Dropout ratio 0.1
Input resolution 5762

Label smoothing ε 0.1
Beam size 5

Table 5. Hyperparameters for fine-tuning ViLTA on image cap-
tioning.

discrepancy arises due to the challenges associated with the
considerable noise present in large-scale web data, which
are integral to VLU tasks. As shown in Table 7, in the con-
text of a large-scale dataset, ViLTA achieves a better gain,
while, in contrast, BLIP brings about performance degrada-
tion.

Dataset
Flickr COCO

TR@1 TR@5 TR@10 TR@1 TR@5 TR@10

4M 94.5 99.8 99.8 73.3 91.8 95.9
150M 95.7 99.9 99.9 80.5 94.6 97.3

Table 6. Experimental results on retrieval task.

Dataset BLIP ViLTA
14M 129M 4M 129M

NLVR2-dev 82.67 82.15 85.16 86.33

NLVR2-test 82.30 82.24 86.13 87.25

Table 7. Results on NLVR2 dataset. Large scale data may not have
significant benefits for VLU tasks.

D. Additional Results

In this section, we present additional results generated by
ViLTA. Specifically, we show the efficacy of ViLTA in im-
age captioning. The case study in Figure 1 shows the gener-
ated image captions on a series of samples. Notably, ViLTA
generates diverse and descriptive captions, which can effec-
tively encapsulate the content of the corresponding images.
These results verify the effectiveness of ViLTA in different
VL tasks.

2



A man riding a dirt bike on 
top of a lush green field.

A young boy holding a 
Nintendo Wii game controller.

A man flying through the air 
while riding a skateboard.

A herd of sheep standing on 
top of a lush green field.

A white train traveling down
a street next to a tall clock 
tower.

A sandwich cut in half on 
a plate.

A bunch of umbrellas that 
are hanging from the ceiling.

A white and black fire 
hydrant in a parking lot.

A teddy bear sitting on top 
of a pole.

A row of surfboards sticking
 out of the sand.

A street scene with cars and
traffic lights.

Three giraffes are standing 
in a grassy field.

Figure 1. Case study of ViLTA on image captioning task.
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