
Supplement Materials for “Weakly-Supervised Action Localization by
Hierarchically-structured Latent Attention Modeling”

Guiqin Wang1† Peng Zhao1 Cong Zhao3,4 Shusen Yang3,4 Jie Cheng2 Luziwei Leng2

Jianxing Liao2 Qinghai Guo2*

1 School of Computer Science and Technology, Xi’an Jiao Tong University
2 ACS Lab, Huawei Technologies

3 School of Mathematics and Statistics, Xi’an Jiao Tong University
4 National Engineering Laboratory for Big Data Analytics, Xi’an Jiao tong University

1. Introduction

This supplementary material contains four parts:

• Section 2 provides the derivation of the ELBO loss
function.

• Section 3 provides a detailed explanation table of our
paper’s parameters.

• Section 4 shows more detailed description for archi-
tecture of our model.

• Section 5 describes the inference process of our
attention-based classification module(EFC) and its
interaction with our change-points detection mod-
ule(DFC).

• Section 6 provides a visualisation sample of the
Change-point Module to show the effectiveness of our
proposed model.

2. Derivation of ELBO
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(1)
As mentioned in the paper, we aim to estimate the true

posterior distribution p(v11:T , v
2
1:T ′ |x1:T ) through the ap-

proximation distribution q(v11:T , v
2
1:T ′ |x1:T ). (in the follow-

ing, in case of no ambiguity, we use p(v|x) to denote the
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true posterior, and use q(v) to denote the approximation for
simplicity). The optimal q(v) is then taken as

q∗(v) = argmin
q(v)

DKL(q(v)||p(v|x)). (2)

To compute the KL-divergence, we have

DKL(q(v)||p(v|x)) = −
∫
v

q(v) log

[
p(v|x)
q(v)

]
dv

=

∫
v

q(v) log q(v)dv −
∫
v

q(v) log p(v|x)dv

= Eq[log q(v)]− Eq[log p(v|x)]
= Eq[log q(v)]− Eq[log p(v, x)] + Eq[log p(x)],

(3)

where in the last equation we use the conditional proba-
bility. Note that in the third term log p(x) is independent to
the distribution q, hence we have

DKL(q(v)||p(v|x)) = Eq[log q(v)]− Eq[log p(v, x)]

+ log p(x).
(4)

The ELBO is then defined as

LELBO := Eq[log p(v, x)]− Eq[log q(v)]

= log p(x)−DKL(q(v)||p(v|x)).
(5)

Minimizing DKL(q(v)||p(v|x)) then becomes maximizing
LELBO since log p(x) is fixed. In specific, for LELBO, we



Table 1. List of Parameter Explanation in our Paper
Parameter Explanation

s the start boundaries of action instance in the input video
e the end boundaries of action instance in the input video
c the class prediction of action instance
q the confidence score of action instance
I the segment sample of input video
P the change-point of input video
X the extraction feature of input video
M the activation score of class for feature
T the length of input video
T ′ the num of change-points
u the decoder output from top-down
d the output of transition model
v the random variable representing the hidden state

p(·) the prior model
q(·) the posterior model
ch the assumption that a change-point exists
st the assumption that the current state stays static

have

LELBO = Eq[log p(x|v)p(v)]− Eq[log q(v)]

= Eq[log p(x|v)] + Eq[log p(v)]− Eq[log q(v)]
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(6)
Note that in the last equation, we use the fact that the dis-
tribution of hidden state vnt depends on the past states in
the same level vn<t and the states in higher level v>n

t , and
similar dependency exists for posterior distribution of vnt .

3. Parameter List
In this section, we summarize the specific meaning of

each parameter, which appears in the paper, following the
table1 that shows detail.

4. Model Architecture
Our model mainly consists of two parts(Attention-based

Classification Module and Change-point detection Mod-
ule).

The Attention-based Classification Module consists of
three branches, each branch consists of a Conv1D and a
softmax layer. Formally, we denote the branch attention
module as following:

output = Softmax(Conv1D(X, θatt)), (7)
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Figure 1. =Change-point Detection Module block architecture.
Different information channels use different model architecture:
Encoder, Decoder, Temporal Model.

where θatt denotes the trainable convolution layer parame-
ters of the attention branch, which is an FC layer.

The Change-point Detection Module is made up of T×2
detection blocks, where T is the length of input video,
2 denotes the 2-level. As Figure1 shows, each detection
block consists of three parts (i.e., Encoder, Decoder, Tem-
poral Model). As Table 2 shows, Encoder is a combination
of a fully-connected(FC) layer(1024-d), which is used for
VAE, and an FC layer(64-d), which is passed into the latent
model; Decoder is a combination of an FC layer(1024-d),
which is used for VAE, and an FC layer(64-d), which is
passed into the latent model; Temporal model is a recurrent
GRU model(256-d), and an FC layer (64-d), which is passed
into the latent model; Latent model, aiming at generating v,
uses an FC network and parameterise a diagonal Gaussian,
with the output dimension of 2× 64.

5. Details of EFC
For attention-based foreground classification(EFC) mod-

ule, we set the result of attention-based classification mod-
ule [2] as our baseline. Based on the the baseline, we se-
lect the foreground change-points(adjacent to baseline) as
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Figure 2. Visualization of qualitative results on the THUMOS-14 dataset. From the above qualitative results, we can conclude that our
proposed Change-point Detection Module is greatly beneficial to locate action boundaries and help us achieve more precise temporal action
localization results. The green dashed line is the correct boundary and red dashed one is wrong. As the fold line shows, in line with the
described detection criteria in the submitted paper, if one of the gray lines falls below the blue line, a change-point is considered to be
detected.

Table 2. The architecture of our model.
Name Layer Input Size Output Size

Input Clip - - T × 2048
Encoder FC layer Input Clip T × 1024

FC layer T × 1024 T × 64
Decoder FC layer T × 1024 T × 1024

FC layer T × 1024 T × 64
Temporal Model GRU T × 256 T × 256

FC layer T × 256 T × 64
Latent Model FC layer - T × (2× 64)

action boundaries. Meanwhile, we utilize the longest com-
mon sub-sequence(LCS) [1] to delete the redundant adja-
cent change-points during the inference process. In spe-
cific, for two adjacent change-points A and B, we con-
struct two snippets lAC = {n1, n2, ..., na} and lBC =
{m1,m2, ...,mb} by connecting A and B with a third
change-point C. We calculate the cosine similarity of snip-

pets ni and mj :

cosi,j = cos(ni,mj). (8)

We set the similarity threshold as 0.65. If cos > 0.65, then
the calculated common sub-sequence is extended by that
element and thus L(i, j) = L(i−1, j−1)+1. If cos ≤ 0.65,
the largest length calculated before is retained for L(i, j):

L(i, j) =

{
L(i− 1, j − 1) + 1 , cosi,j > 0.65

max{L(i− 1, j), L(i, j − 1)}, cosi,j ≤ 0.65

(9)
where L(i, j) = 0 if i = 0 or j = 0.

Finally, we compare the resulted L = L(a, b) with the
baseline(the boundaries result of attention-based classifica-
tion module), we delete the the redundant change-points to
obtain action boundaries. Specifically, we compare L with
the length K of selected baseline(the most overlapped snip-
pet with lBC from baseline snippets). If L < K/2 (which
indicates that lAC and lBC represent different actions), we



retain the change-point A and the change-point B, other-
wise we delete A.

6. Visualisation Result
Figure 2 shows two examples comparing the ground

truth to prove effectiveness of our change-point detection
module. Our model is able to produce precise bound-
aries and, consequently, better action localization through
the change-point detection module. For action localization
task, our model is able to obtain more accurate temporal
boundaries. This leads to average precision improvements
for higher IoU overlap thresholds. However, since we select
the right candidates through foreground and background de-
tection, this relies on the attention model to filter bound-
aries, which limits the performance of our model.
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