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1. Datasets

1.1. Synthetic datasets

The frequency bands of each class in synthetic datasets
are shown in Table 1. For each dataset, class C3 has a bias
to a specific band, and classes C0 and C1 are designed to
contain frequencies from the other three bands. Class C2

contains frequencies across the whole spectrum. Example
images from the four synthetic datasets that we created are
shown in Fig. 1. We designed the classes so that they have
specific frequency characteristics. We induced different lev-
els of class-wise difficulty when the NNs are trained to dis-
tinguish their samples. Across the four datasets, the images
of class C3 are easily distinguishable from those of the other
three classes, as observed visually. This is because class C3

has a frequency bias to a specific band, e.g. low-frequency
bias in the SynB1

dataset and high-frequency bias in the
SynB4 dataset. The images of classes C0, C1, and C2 are
visually similar across the four synthetic datasets. Despite
the visual similarity, the images of class C0 have special
patterns consisting of a fixed set of frequencies across the
spectrum. The special patterns are the designed character-
istics making the images of class C0 easily distinguishable
from classes C1 and C2. Note that, the special patterns con-
sist of eight frequencies that can be evenly filtered based on
the band-stop filters we use during testing. This is to an-
alyze how the NNs utilize frequency information from the
special patterns fairly. The difference between classes C1

and C2 is the number of frequency bands sampled for the
data generation. Class C1 has one less sampling band than
those of class C2. However, for the images of classes C1

and C2, it is hard for human observers to identify their dif-
ference visually while NNs can, according to their classi-
fication results. On the other hand, classes C0 and C3 are
easier for human observers to be visually distinguished.

1.2. OOD test data: ImageNet-SCT

ImageNet-SCT is specifically designed to validate the
influence of frequency shortcuts on an unseen dataset, for

C0 C1 C2 C3
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(b) SynB2

(c) SynB3

(d) SynB4

Figure 1: Samples of synthetic datasets. Class C3 has a frequency
bias to a specific band, which is B1 for SynB1 , B2 for SynB2 ,
B3 for SynB3 , and B4 for SynB4 . Due to frequency bias, images
of class C3 can be easily distinguished from other classes.

models trained on ImageNet10. The analysis demonstrates
that NNs might learn frequency shortcuts for easier classifi-
cation, which correspond to texture-based or shape-based
patterns. The classification dependency on the patterns
shows that NNs might ignore other useful semantics. There-
fore, to validate how this learning behavior affects OOD
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Table 1: Frequency bands of each synthetic dataset.

Synthetic datasets

class SynB1 SynB2 SynB3 SynB4

C0 B2, B3, B4 B1, B3, B4 B1, B2, B4 B1, B2, B3

C1 B2, B3, B4 B1, B3, B4 B1, B2, B4 B1, B2, B3

C2 B1, B2, B3, B4 B1, B2, B3, B4 B1, B2, B3, B4 B1, B2, B3, B4

C3 B1 B2 B3 B4

generalization, we construct a new dataset, containing 10
classes similar to those of ImageNet-10 [4] but with dif-
ferent shape/texture characteristics. ImageNet-trained NNs
are found to have a texture bias [1]. Thus, the main criterion
applied for the composition of the dataset is to have classes
with similar shape characteristics to ImageNet-10, instead
of texture characteristics, except for classes ‘military air-
craft’, ‘car’, and ‘fishing vessel’ which have similar texture
characteristics to the corresponding classes in ImageNet-10.
This helps to evaluate the influence of learned frequency
shortcuts on an OOD test from two perspectives, namely
when the shortcut features are present or absent. Each class
contains 7 renditions of images (i.e. art, cartoon, deviantart,
painting, sculpture, sketch and toy), which is inspired by
the design idea of ImageNet-R [3]. Example images of
ImageNet-SCT are shown in Fig. 2. Each row shows the
images of the seven renditions of one class.

2. Training setup

Synthetic datasets. We train AlexNet [5], ResNet(s) [2]
and VGG-16 [6] models for 100 epochs on the four syn-
thetic datasets. The initial learning rate is 0.01, reduced by
a factor of 10 if the validation loss does not decrease for 10
epochs. We use SGD optimizer with momentum 0.9 and
weight decay 10−4, and batch size 128.

ImageNet-10 dataset. Models with ResNet(s) [2] and
VGG-16 [6] architectures are trained for 200 epochs on the
ImageNet-10 dataset. The initial learning rate is 0.01 and
is reduced by a factor of 10 if the validation loss does not
decrease for 10 epochs. We use SGD optimizer with mo-
mentum 0.9 and weight decay 10−4, and batch size 16.

3. Extra results

3.1. Synthetic datasets.

F1-scores Fig. 3 shows the F1-score computed on the test
sets of the four synthetic datasets during the first 500 itera-
tions of the training of AlexNet, ResNet9 and VGG16. As
generally observable, all model architectures achieve higher
F1-scores for class C3 than for the other classes. This indi-
cates that class C3 is recognized immediately and easily by

the NNs during training. This is consistent with the results
of ResNet18 and shows the existence of shortcut learning,
which prioritizes the recognition of easily distinguishable
frequency patterns.

Relative confusion matrices. Fig. 4 shows the relative
confusion matrices of AlexNet (first column), ResNet9
(second column) and VGG16 (third column) trained on the
four synthetic datasets. The models are tested on the dif-
ferent band-stop test sets, obtained by suppressing in turn
the frequencies in two out of the four sub-bands consid-
ered for the data generation. Because of the class-wise
frequency characteristics of the synthetic datasets, these
tests are meant to inspect the frequency utilization of dif-
ferent NN models, i.e. what frequencies are needed for
classification. The performance results of the models are
mostly stable when they are tested on test sets retaining
only two frequency bands (see the values of ∆Ci,Ci where
Ci ∈ {C0, C1, C2, C3}), showing that they do not need
complete frequency information for classification. For in-
stance, class C0 has a special pattern consisting of fre-
quencies across the whole spectrum, and the corresponding
∆C0,C0 is mostly close to zero. Models may find shortcut
solutions in the Fourier domain for classification and this
behavior is common across different architectures.

ADCS. The ADCS of classes in the four synthetic
datasets are shown in Fig. 5. Across the four datasets, class
C3 has a significant bias on a specific band, from low to
high. The yellow dots in ADCSC3 (belong to some fre-
quencies in the frequency set of the special pattern) indi-
cate that the corresponding frequencies have slightly more
energy than other classes, which is caused by the removal of
the specific frequencies (non-ideal filtering). Class C0 has
more energy around the specific frequency sets than other
classes, this is also due to the non-ideal filtering. In gen-
eral, the ADCS shows that the classes in a synthetic dataset
Synb have distinguishable frequency characteristics. These
might be used as shortcuts. The class with the most distinc-
tive frequency characteristics, i.e. class C3 is learned first
by NNs in the training phase (see Fig. 3), indicating that
the models have a tendency to identify that distinctive fre-
quency characteristic as an easy solution for the classifica-
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Figure 2: Example images from the ImageNet-SCT dataset. Images are organized in 10 classes, with images of seven
different renditions: (in order of the columns) art, cartoon, deviantart, painting, sculpture, sketch, and toy.

tion problem. ADCS can be used to analyze the class-wise
frequency characteristics in a dataset, rather than being used
directly to predict which class might be learned first. Fur-
ther investigation on frequency characteristics and learning
dynamics is needed to establish if certain frequency charac-
teristics induce a shortcut or not.

3.2. ImageNet-10

ADCS. The ADCS of other classes in ImageNet-10 are
shown in Fig. 6. The classes have different frequency char-
acteristics, which might be applied as discriminative fea-
tures by NNs for classification. For instance, class ‘siamese
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Figure 3: F1-scores of the first 500 iterations of AlexNet, ResNet9, and VGG16 trained on the four synthetic datasets
respectively.
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Figure 4: Relative confusion matrices of AlexNet, ResNet9,
and VGG16 trained on the synthetic datasets

cat’ has more energy in low-frequency compared to other
classes, which is in line with the observation that the mod-
els use more low frequencies to classify the samples of
‘siamese cat’ from the top-5% DFM. Further, when us-
ing SIN (replacing textures while emphasizing shapes) to
augment training data, ResNet18 learns a shape-bias fre-
quency shortcut for it, showing the importance to analyze
class-wise frequency characteristics of training data in im-
age classification. Differently, the class ‘container ship’ has
more energy on the frequencies whose spatial representa-
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Figure 5: ADCS of the classes in synthetic datasets.

tions are horizontal and vertical lines. The ADCS of class
‘trailer truck’ shares similar characteristics to that of class
‘container ship’, but it does not have extremely low energy
on high-frequency. Similar to the ADCS of class ‘humming
bird’, class ‘ox’ has high energy in many high frequencies,
though not as high as that of ‘humming bird’. For other
classes without obvious frequency differences, it is difficult
to interpret the frequency utilization of the NNs, and thus



(a) airliner (b) wagon (c) siamese cat (d) ox

(e) golden re-
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Figure 6: ADCS of other classes in ImageNet-10.

we compute their DFMs.

Precision and recall. We show the precision and recall
of ResNet50 and VGG16 computed on the low-passed and
high-passed test sets of ImageNet-10 (not the original test
set), during the first 1200 iterations of training in Fig. 7.
The models achieve generally higher precision and recall
in the classes ‘humming bird’ and ‘zebra’. This indicates
that these classes have special characteristics that are eas-
ily used for classification by the models at the early training
stages. The observations are in line with the learning behav-
ior of ResNet18 trained on ImageNet-10 that we highlighted
in the main paper, confirming that the bias of classification
models is indeed driven by data characteristics, being low-
or high-frequency components in the images according to
the simplicity to solve the optimization problem.

Top-1% and top-10% DFMs. We show the top-1%
and top-10% DFMs of each class for models trained on
ImageNet-10 in Figs. 8a and 8b. We observe from the
top-1% DFMs that NNs take the frequencies whose spatial
representations are horizontal and vertical lines as the most
dominant frequencies since the removal of them results in
high loss increment. From the top-10% DFM in Fig. 8b,
we observe the frequency utilization of NNs varies slightly
across different architectures but shares similar patterns.

Results on ImageNet-10 DFM-filtered versions The
classification results of models tested on ImageNet-10
DFM-filtered versions, with only the top-1% and top-10%
dominant frequencies retained, are shown in Tables 2 and 3.

If a model uses 1% of frequencies and can achieve
correct classification for most of the test samples, then
it may not extract deep semantic information from the
data and be subject to a shortcut learned during train-
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(a) Precision of ResNet50.
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(b) Recall of ResNet50.
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(c) Precision of VGG16.
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(d) Recall of VGG16.

Figure 7: Precision and recall rates of ResNet50 and VGG16
trained on ImageNet-10 for the first 1200 iterations.

ing. From Table 2, we observe that using only 1% of fre-
quencies, ResNet18+AugMix predicts correctly 94% of the
samples of class ‘container ship’ with FPR = 0.64, indi-
cating a learned frequency shortcut and a strong bias to-
wards a small set of frequencies. Interestingly, we observe
VGG16, using only 1% of frequencies, learns a frequency
shortcut for class ‘ox’, which has TPR = 0.76 and FPR =
0.35. ResNet18+SIN uses frequency shortcuts for classes
‘siamese cat’, ‘ox’, and ‘golden retriever’, observed from
the high values of TPR and FPR.

By increasing the number of dominant frequencies con-
sidered in the input test images, as expected, all mod-
els achieve generally better performance for most of the
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Figure 8: Dominant frequency maps of ResNet18 (with AutoAugment/AugMix), ResNet50 and VGG16. The maps show the
(a) top-1% and (b) top-10% dominant frequencies of each class in ImageNet-10.

classes, compared to that on top-1% DFM-filtered test sets.
From the results of models using the top-10% dominant fre-
quencies for classification, we can, however, identify simi-
lar frequency shortcuts (to the identified frequency shortcuts

using the top-5% dominant frequencies) from the Table 3.
For instance, models other than ResNet18+AutoAug have
high TPRs and FPRs for class ‘container ship’, indicating
learned frequency shortcuts. For class ‘zebra’, ResNet18



Table 2: TPRs and FPRs on the top-1% DFM-filtered versions of ImageNet-10 (w/ df).

ImageNet-10

Model airliner wagon humming bird siamese cat ox golden retriever tailed frog zebra container ship trailer truck

ResNet18 TPR 0.08 0 0 0.84 0.02 0 0.24 0.38 0.4 0.24
FPR 0.0067 0 0 0.1133 0.0156 0.0089 0.0133 0.0822 0.1467 0.0622

ResNet18+AutoAug TPR 0 0 0 0.06 0 0 0 0.08 0.14 0.04
FPR 0 0 0 0.0022 0 0 0.0022 0.0756 0.1067 0.0356

ResNet18+AugMix TPR 0.02 0 0 0 0.34 0.1 0.06 0 0.94 0.1
FPR 0.0044 0 0.0044 0 0.2133 0.0089 0 0 0.64 0.04

ResNet18+SIN TPR 0.4 0 0.22 0.88 0.74 0.72 0 0 0 0.04
FPR 0.1489 0.0044 0.2444 0.42 0.4022 0.4889 0.0022 0.0022 0.0044 0.0311

ResNet50 TPR 0.34 0 0 0.12 0 0.2 0 0.12 0.2 0
FPR 0.1 0 0.0333 0.0133 0 0.04 0.0044 0.0489 0.0556 0.0111

VGG16 TPR 0.02 0 0 0.64 0.76 0.04 0.02 0.04 0.06 0.3
FPR 0.0067 0 0 0.0978 0.3556 0.0311 0 0.0422 0.06 0.1422

Table 3: TPRs and FPRs on the top-10% DFM-filtered versions of ImageNet-10 (w/ df).

ImageNet-10

Model airliner wagon humming bird siamese cat ox golden retriever tailed frog zebra container ship trailer truck

ResNet18 TPR 0.2 0 0.62 0.92 0.06 0.16 0.12 0.9 0.84 0.02
FPR 0.0067 0 0.0378 0.0556 0.0356 0.0156 0 0.1156 0.2311 0

ResNet18+AutoAug TPR 0 0 0.22 0.66 0.2 0.18 0 0.64 0.02 0.02
FPR 0 0 0.0067 0.1267 0.1067 0.0089 0 0.0289 0.0089 0.0022

ResNet18+AugMix TPR 0.38 0 0.4 0.84 0.42 0.5 0.02 0.68 0.9 0.64
FPR 0.0356 0 0.0089 0.06 0.1556 0.0156 0 0.0022 0.1978 0.0311

ResNet18+SIN TPR 0.12 0.04 0.6 0.88 0.94 0.62 0.06 0.66 0.08 0.12
FPR 0.0089 0.0067 0.02 0.1044 0.3867 0.0933 0.0022 0.0489 0.0667 0

ResNet50 TPR 0.44 0 0.04 0.72 0 0.42 0 0.12 0.88 0.1
FPR 0.0733 0 0.0044 0.0378 0.0133 0.0311 0 0.04 0.2356 0.0178

VGG16 TPR 0.4 0 0.5 0.8 0.1 0.42 0.04 0.68 0.82 0.22
FPR 0.0422 0 0.0311 0.0467 0.1133 0.0267 0 0.0378 0.14 0.0378

can predict 90% of the samples, with FPR = 0.1156, in-
dicating another learned frequency shortcut. Moreover,
ResNet18+SIN learns a frequency shortcut for class ‘ox’,
while it is less biased to class ‘siamese cat’ with more
frequencies provided (lower FPR compared to that of the
model tested on the corresponding top-1% DFM-filtered
test set). The identification of learned frequency shortcuts
can be automatized by choosing the top-x% ranked fre-
quency and setting thresholds (to the values of TPR and
FPR) to evaluate the presence of shortcuts when testing the
models on DFM-filtered test sets.
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