A. Appendix - Proofs

Proof of Lemma 3.1. By definition 3.3, it suffices to prove $\forall i \in [n], T_i(\mathbf{x}) \leq T_i(\mathbf{y})$. Let w_{ij} be the *i*th row and *j*th column component of \mathbf{W} :

$$T_i(\mathbf{x}) - T_i(\mathbf{y}) = \left(\sum_{j \in [m]} w_{ij} x_j + b_i\right) - \left(\sum_{j \in [m]} w_{ij} y_j + b_i\right)$$
$$= \sum_{j \in [m]} w_{ij} (x_j - y_j)$$
$$\leqslant 0$$

Proof of Theorem 3.1. DNN⁺ is a composition of monotone functions: layers of non-decreasing activation functions Φ and affine transformation with all non-negative weights $T : \mathbb{R}^m \to \mathbb{R}^n$ (Lemma 3.1). By closure of monotone function under compositionality, we have that DNN⁺ is an order-preserving monotone function.

Proof of Corollary 3.1.1. Without loss of generality, we assume the feature index pair $i, j \in [n]$ satisfy $a_i a_j < 0$. Let $\mathbf{d} = (d_1, \ldots, d_i, \ldots, d_j, \ldots, d_n)$ be a point on the segment, i.e., $\mathbf{ad} + b = 0$. Now we construct three points A, B, C with $\epsilon > 0$.⁴

$$A = (d_1, \dots, d_i - \epsilon, \dots, d_j, \dots, d_n) \quad (14)$$

$$B = (d_1, \dots, d_i + \epsilon, \dots, d_j, \dots, d_n)$$
(15)

$$C = (d_1, \dots, d_i + \epsilon, \dots, d_j - 2\frac{a_i}{a_j}\epsilon, \dots, d_n)$$
(16)

First since $a_i a_j < 0$ and $\epsilon > 0$, we have $2 \frac{a_i}{a_i} \epsilon < 0$, thus

$$\begin{cases} x_i^A < x_i^B = x_i^C \\ x_j^A = x_j^B < x_j^C \\ \implies F^+(A) \le F^+(B) \le F^+(C) \quad (17) \end{cases}$$

Simultaneously, from ad + b = 0, we also have

$$\begin{cases} \mathbf{a}A + b = \mathbf{a}\mathbf{d} + b - a_i\epsilon &= -a_i\epsilon\\ \mathbf{a}B + b = \mathbf{a}\mathbf{d} + b + a_i\epsilon &= a_i\epsilon\\ \mathbf{a}C + b = \mathbf{a}\mathbf{d} + b + a_i\epsilon - 2\frac{a_i}{a_j}a_j\epsilon = -a_i\epsilon \end{cases}$$

Then A, C must lie on the same side of L but different than B, thus $f(A) = f(C) \neq f(B)$. By the same logic as in Theorem 3.3, this contradicts with Eq 17; therefore, DNN⁺ cannot solve classification problems where the decision boundaries $\{L\}$ have any segment L with a normal $\mathbf{a} = (a_1, \ldots, a_n)$ where $\exists i \neq j \in [n], a_i a_j < 0$. *Proof of Corollary 3.1.2.* Without loss of generality, let's assume region $R_0 \in \{R\}$ is a closed set. We denote all points in R_0 as a general form $\mathbf{x} = (x_1, \ldots, x_n)$. Consider any point $B = (x_1^B, \ldots, x_n^B) \in R_0$, we can always find two points $A', C' \in \partial R$ that follow $A' \preceq B \preceq C'$ with the following construction method:

$$A' = (min(x_1), x_2^B, \dots, x_n^B)$$
$$C' = (max(x_1), x_2^B, \dots, x_n^B)$$

As we move $\epsilon > 0$ away from the boundary, we can further construct two points $A, C \notin R_0$ where

$$A = (min(x_1) - \epsilon, x_2^B, \dots, x_n^B)$$
$$C = (max(x_1) + \epsilon, x_2^B, \dots, x_n^B)$$

Thus $A \leq B \leq C \implies F^+(A) \leq F^+(B) \leq F^+(C)$, yet we have $B \in R_0$ while $A, C \notin R_0 \implies f(A) = f(C) \neq f(B)$. By the same reasoning as in theorem 3.3, we have a contradiction thus a DNN⁺ cannot solve problems where the decision boundary forms a closed set.

Proof of Corollary 3.1.3. Without loss of generality, we assume R_0, R_1 are disconnected and belong to the same class, i.e., $f(x) = c_1, \forall x \in R_0 \cup R_1, c_1$ is a constant. Now consider any pair of points $(A, B), A \in R_0, B \in R_1$, the straight line segment AB that connects A and B must pass through another class by Definition 4.4. This means we must have point C on line AB, but $f(c) = c_2 \neq c_1$ where c_2 is a constant. Next, we discuss the order relationship between A and B:

case 1 Exists such a pair $A \leq B$. Then since A, C, B are colinear and C is in between A and B, we have $A \leq C \leq B \implies F^+(A) \leq F^+(C) \leq F^+(B)$. Yet by construction, we also have $f(A) = f(B) \neq f(C)$. By the same reasoning as in Theorem 3.3, we have a contradiction. Thus, a DNN⁺ cannot solve classification problems that fall into this case.

case 2 Does NOT exist such a pair $\mathbf{A} \leq \mathbf{B}$. This means for all pairs of points in the two disconneted regions, they don't follow the ordering defined in Definition 3.3. Thus, there exists two input dimensions, $i, j \in [n]$, such that for all $\mathbf{x}^{\mathbf{0}} = (\dots, x_i^0, \dots, x_j^0, \dots) \in R_0$, and for all $\mathbf{x}^{\mathbf{1}} = (\dots, x_i^1, \dots, x_i^1, \dots) \in R_1$, they follow

$$\begin{cases} x_i^0 < t_i < x_i^1 \\ x_j^0 > t_j > x_j^1 \end{cases}, t_1, t_2 \in \mathbb{R}$$
 (18)

Now, for a point $G = (\dots, x_i^F, \dots, x_j^F, \dots) \in R_0$, we always have $x_i^G < t_i$ and $x_j^G > t_j$. Further, we can always

⁴For the choice of ϵ under non-linear decision boundary scenario, we assume here we can always find ϵ such that it is larger than the linear approximation error. For more details, please see Remark 5

construct two more points $D, E \in (K - R_0 - R - 1)$ by

$$D = (\dots, x_i^G, \dots, t_j, \dots)$$
$$E = (\dots, t_i, \dots, x_j^G, \dots)$$

Thus we have $D \preceq G \preceq E \implies F^+(D) \leqslant F^+(G) \leqslant F^+(E)$. However, since we have $F \in R_0$ and yet $D, E \in (K - R_0 - R - 1)$, we therefore have $f(D) = f(E) \neq f(G)$. By the same reasoning as in theorem 3.3, we have a contradiction. Thus, a DNN⁺ cannot solve classification problems that fall into this case.

Collectively, we proved that a DNN⁺ cannot solve a classification problem where there exists a class that is a disconnected space. $\hfill\square$