
A. Appendix - Proofs
Proof of Lemma 3.1. By definition 3.3, it suffices to prove
∀i ∈ [n], Ti(x) ⩽ Ti(y). Let wij be the ith row and jth
column component of W:

Ti(x)− Ti(y) = (
∑
j∈[m]

wijxj + bi)− (
∑
j∈[m]

wijyj + bi)

=
∑
j∈[m]

wij(xj − yj)

⩽ 0

Proof of Theorem 3.1. DNN+ is a composition of mono-
tone functions: layers of non-decreasing activation functions
Φ and affine transformation with all non-negative weights
T : Rm → Rn (Lemma 3.1). By closure of monotone
function under compositionality, we have that DNN+ is an
order-preserving monotone function.

Proof of Corollary 3.1.1. Without loss of generality, we as-
sume the feature index pair i, j ∈ [n] satisfy aiaj < 0. Let
d = (d1, . . . , di, . . . , dj , . . . , dn) be a point on the segment,
i.e., ad + b = 0. Now we construct three points A,B,C
with ϵ > 0.4

A =(d1, . . . , di − ϵ, . . . , dj , . . . , dn) (14)
B =(d1, . . . , di + ϵ, . . . , dj , . . . , dn) (15)

C =(d1, . . . , di + ϵ, . . . , dj − 2
ai
aj

ϵ, . . . , dn) (16)

First since aiaj < 0 and ϵ > 0, we have 2 ai

aj
ϵ < 0, thus

{
xA
i < xB

i = xC
i

xA
j = xB

j < xC
j

=⇒ A ⪯ B ⪯ C

=⇒ F+(A) ≤ F+(B) ≤ F+(C) (17)

Simultaneously, from ad+ b = 0, we also have
aA+ b = ad+ b− aiϵ = −aiϵ

aB + b = ad+ b+ aiϵ = aiϵ

aC + b = ad+ b+ aiϵ− 2
ai
aj

ajϵ = −aiϵ

Then A,C must lie on the same side of L but different
than B, thus f(A) = f(C) ̸= f(B). By the same logic
as in Theorem 3.3, this contradicts with Eq 17; therefore,
DNN+ cannot solve classification problems where the de-
cision boundaries {L} have any segment L with a normal
a = (a1, . . . , an) where ∃ i ̸= j ∈ [n], aiaj < 0.

4For the choice of ϵ under non-linear decision boundary scenario, we
assume here we can always find ϵ such that it is larger than the linear
approximation error. For more details, please see Remark 5

Proof of Corollary 3.1.2. Without loss of generality, let’s
assume region R0 ∈ {R} is a closed set. We denote all
points in R0 as a general form x = (x1, . . . , xn). Consider
any point B = (xB

1 , . . . , x
B
n ) ∈ R0, we can always find

two points A′, C ′ ∈ ∂R that follow A′ ⪯ B ⪯ C ′ with the
following construction method:

A′ = (min(x1), x
B
2 , . . . , x

B
n )

C ′ = (max(x1), x
B
2 , . . . , x

B
n )

As we move ϵ > 0 away from the boundary, we can further
construct two points A,C /∈ R0 where

A = (min(x1)− ϵ, xB
2 , . . . , x

B
n )

C = (max(x1) + ϵ, xB
2 , . . . , x

B
n )

Thus A ⪯ B ⪯ C =⇒ F+(A) ⩽ F+(B) ⩽ F+(C), yet
we have B ∈ R0 while A,C /∈ R0 =⇒ f(A) = f(C) ̸=
f(B). By the same reasoning as in theorem 3.3, we have
a contradiction thus a DNN+ cannot solve problems where
the decision boundary forms a closed set.

Proof of Corollary 3.1.3. Without loss of generality, we as-
sume R0, R1 are disconnected and belong to the same class,
i.e., f(x) = c1,∀x ∈ R0 ∪ R1, c1 is a constant. Now
consider any pair of points (A,B), A ∈ R0, B ∈ R1, the
straight line segment AB that connects A and B must pass
through another class by Definition 4.4. This means we must
have point C on line AB, but f(c) = c2 ̸= c1 where c2 is a
constant. Next, we discuss the order relationship between A
and B:

case 1 Exists such a pair A ⪯ B. Then since A,C,B are
colinear and C is in between A and B, we have A ⪯ C ⪯
B =⇒ F+(A) ⩽ F+(C) ⩽ F+(B). Yet by construction,
we also have f(A) = f(B) ̸= f(C). By the same reasoning
as in Theorem 3.3, we have a contradiction. Thus, a DNN+

cannot solve classification problems that fall into this case.

case 2 Does NOT exist such a pair A ⪯ B. This means
for all pairs of points in the two disconneted regions, they
don’t follow the ordering defined in Definition 3.3. Thus,
there exists two input dimensions, i, j ∈ [n], such that for
all x0 = (. . . , x0

i , . . . , x
0
j , . . . ) ∈ R0, and for all x1 =

(. . . , x1
i , . . . , x

1
j , . . . ) ∈ R1, they follow{
x0
i < ti < x1

i

x0
j > tj > x1

j

, t1, t2 ∈ R (18)

Now, for a point G = (. . . , xF
i , . . . , x

F
j , . . . ) ∈ R0, we

always have xG
i < ti and xG

j > tj . Further, we can always



construct two more points D,E ∈ (K − R0 − R − 1) by

D = (. . . , xG
i , . . . , tj , . . . )

E = (. . . , ti, . . . , x
G
j , . . . )

Thus we have D ⪯ G ⪯ E =⇒ F+(D) ⩽ F+(G) ⩽
F+(E). However, since we have F ∈ R0 and yet D,E ∈
(K − R0 − R − 1), we therefore have f(D) = f(E) ̸=
f(G). By the same reasoning as in theorem 3.3, we have
a contradiction. Thus, a DNN+ cannot solve classification
problems that fall into this case.

Collectively, we proved that a DNN+ cannot solve a clas-
sification problem where there exists a class that is a discon-
nected space.
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