A. Appendix - Proofs

Proof of Lemma 3.1. By definition 3.3, it suffices to prove $\forall i \in[n], T_{i}(\mathbf{x}) \leqslant T_{i}(\mathbf{y})$. Let $w_{i j}$ be the i th row and j th column component of \mathbf{W} :

$$
\begin{aligned}
T_{i}(\mathbf{x})-T_{i}(\mathbf{y}) & =\left(\sum_{j \in[m]} w_{i j} x_{j}+b_{i}\right)-\left(\sum_{j \in[m]} w_{i j} y_{j}+b_{i}\right) \\
& =\sum_{j \in[m]} w_{i j}\left(x_{j}-y_{j}\right) \\
& \leqslant 0
\end{aligned}
$$

Proof of Theorem 3.1. DNN^{+}is a composition of monotone functions: layers of non-decreasing activation functions Φ and affine transformation with all non-negative weights $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ (Lemma 3.1). By closure of monotone function under compositionality, we have that DNN^{+}is an order-preserving monotone function.

Proof of Corollary 3.1.1. Without loss of generality, we assume the feature index pair $i, j \in[n]$ satisfy $a_{i} a_{j}<0$. Let $\mathbf{d}=\left(d_{1}, \ldots, d_{i}, \ldots, d_{j}, \ldots, d_{n}\right)$ be a point on the segment, i.e., $a d+b=0$. Now we construct three points A, B, C with $\epsilon>0 .{ }^{4}$

$$
\begin{array}{lll}
A=\left(d_{1}, \ldots,\right. & d_{i}-\epsilon, \ldots, d_{j}, & \left.\ldots, d_{n}\right) \\
B=\left(d_{1}, \ldots,\right. & d_{i}+\epsilon, \ldots, d_{j}, & \left.\ldots, d_{n}\right) \\
C=\left(d_{1}, \ldots,\right. & \left.d_{i}+\epsilon, \ldots, d_{j}-2 \frac{a_{i}}{a_{j}} \epsilon, \ldots, d_{n}\right) \tag{16}
\end{array}
$$

First since $a_{i} a_{j}<0$ and $\epsilon>0$, we have $2 \frac{a_{i}}{a_{j}} \epsilon<0$, thus

$$
\begin{align*}
&\left\{\begin{array}{l}
x_{i}^{A}<x_{i}^{B}=x_{i}^{C} \\
x_{j}^{A}=x_{j}^{B}<x_{j}^{C}
\end{array} \quad \Longrightarrow A \preceq B \preceq C\right. \\
& \Longrightarrow F^{+}(A) \leq F^{+}(B) \leq F^{+}(C) \tag{17}
\end{align*}
$$

Simultaneously, from ad $+b=0$, we also have

$$
\begin{cases}\mathbf{a} A+b=\mathbf{a d}+b-a_{i} \epsilon & =-a_{i} \epsilon \\ \mathbf{a} B+b=\mathbf{a d}+b+a_{i} \epsilon & =a_{i} \epsilon \\ \mathbf{a} C+b=\mathbf{a d}+b+a_{i} \epsilon-2 \frac{a_{i}}{a_{j}} a_{j} \epsilon & =-a_{i} \epsilon\end{cases}
$$

Then A, C must lie on the same side of L but different than B, thus $f(A)=f(C) \neq f(B)$. By the same logic as in Theorem 3.3, this contradicts with Eq 17; therefore, DNN^{+}cannot solve classification problems where the decision boundaries $\{L\}$ have any segment L with a normal $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ where $\exists i \neq j \in[n], a_{i} a_{j}<0$.

[^0]Proof of Corollary 3.1.2. Without loss of generality, let's assume region $R_{0} \in\{R\}$ is a closed set. We denote all points in R_{0} as a general form $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$. Consider any point $B=\left(x_{1}^{B}, \ldots, x_{n}^{B}\right) \in R_{0}$, we can always find two points $A^{\prime}, C^{\prime} \in \partial R$ that follow $A^{\prime} \preceq B \preceq C^{\prime}$ with the following construction method:

$$
\begin{aligned}
A^{\prime} & =\left(\min \left(x_{1}\right), x_{2}^{B}, \ldots, x_{n}^{B}\right) \\
C^{\prime} & =\left(\max \left(x_{1}\right), x_{2}^{B}, \ldots, x_{n}^{B}\right)
\end{aligned}
$$

As we move $\epsilon>0$ away from the boundary, we can further construct two points $A, C \notin R_{0}$ where

$$
\begin{aligned}
A & =\left(\min \left(x_{1}\right)-\epsilon, x_{2}^{B}, \ldots, x_{n}^{B}\right) \\
C & =\left(\max \left(x_{1}\right)+\epsilon, x_{2}^{B}, \ldots, x_{n}^{B}\right)
\end{aligned}
$$

Thus $A \preceq B \preceq C \Longrightarrow F^{+}(A) \leqslant F^{+}(B) \leqslant F^{+}(C)$, yet we have $B \in R_{0}$ while $A, C \notin R_{0} \Longrightarrow f(A)=f(C) \neq$ $f(B)$. By the same reasoning as in theorem 3.3, we have a contradiction thus a DNN^{+}cannot solve problems where the decision boundary forms a closed set.

Proof of Corollary 3.1.3. Without loss of generality, we assume R_{0}, R_{1} are disconnected and belong to the same class, i.e., $f(x)=c_{1}, \forall x \in R_{0} \cup R_{1}, c_{1}$ is a constant. Now consider any pair of points $(A, B), A \in R_{0}, B \in R_{1}$, the straight line segment $A B$ that connects A and B must pass through another class by Definition 4.4. This means we must have point C on line $A B$, but $f(c)=c_{2} \neq c_{1}$ where c_{2} is a constant. Next, we discuss the order relationship between A and B :
case 1 Exists such a pair $\mathbf{A} \preceq \mathbf{B}$. Then since A, C, B are colinear and C is in between A and B, we have $A \preceq C \preceq$ $B \Longrightarrow F^{+}(A) \leqslant F^{+}(C) \leqslant F^{+}(B)$. Yet by construction, we also have $f(A)=f(B) \neq f(C)$. By the same reasoning as in Theorem 3.3, we have a contradiction. Thus, a DNN^{+} cannot solve classification problems that fall into this case.
case 2 Does NOT exist such a pair $\mathbf{A} \preceq$ B. This means for all pairs of points in the two disconneted regions, they don't follow the ordering defined in Definition 3.3. Thus, there exists two input dimensions, $i, j \in[n]$, such that for all $\mathbf{x}^{0}=\left(\ldots, x_{i}^{0}, \ldots, x_{j}^{0}, \ldots\right) \in R_{0}$, and for all $\mathbf{x}^{1}=$ $\left(\ldots, x_{i}^{1}, \ldots, x_{j}^{1}, \ldots\right) \in R_{1}$, they follow

$$
\left\{\begin{array}{l}
x_{i}^{0}<t_{i}<x_{i}^{1} \tag{18}\\
x_{j}^{0}>t_{j}>x_{j}^{1}
\end{array} \quad, t_{1}, t_{2} \in \mathbb{R}\right.
$$

Now, for a point $G=\left(\ldots, x_{i}^{F}, \ldots, x_{j}^{F}, \ldots\right) \in R_{0}$, we always have $x_{i}^{G}<t_{i}$ and $x_{j}^{G}>t_{j}$. Further, we can always
construct two more points $D, E \in\left(K-R_{0}-R-1\right)$ by

$$
\begin{aligned}
& D=\left(\ldots, x_{i}^{G}, \ldots, t_{j}, \ldots\right) \\
& E=\left(\ldots, t_{i}, \ldots, x_{j}^{G}, \ldots\right)
\end{aligned}
$$

Thus we have $D \preceq G \preceq E \Longrightarrow F^{+}(D) \leqslant F^{+}(G) \leqslant$ $F^{+}(E)$. However, since we have $F \in R_{0}$ and yet $D, E \in$ $\left(K-R_{0}-R-1\right)$, we therefore have $f(D)=f(E) \neq$ $f(G)$. By the same reasoning as in theorem 3.3, we have a contradiction. Thus, a DNN^{+}cannot solve classification problems that fall into this case.

Collectively, we proved that a DNN^{+}cannot solve a classification problem where there exists a class that is a disconnected space.

[^0]: ${ }^{4}$ For the choice of ϵ under non-linear decision boundary scenario, we assume here we can always find ϵ such that it is larger than the linear approximation error. For more details, please see Remark 5

