Supplementary Material for
Diffusion Models as Masked Autoencoder

Appendix

In the Appendix, we first provide implementation details
in Appendix A, and then provide more qualitative results in
Appendix B.

A. Implementation Details
A.1. ImageNet Experiments

Noise schedule with p. We introduce a hyper-parameter p
to control the noise level of training inputs. Specifically,
we use p to exponentiate each variance ; to 87, enlarging
these noise variance. Recall that the training samples can
be reparameterized to x}" = /ax]' + /1 — dze, where
a;=1—0; and oy = szl a;. In Fig. 1, we plot how the
values of the data coefficient & progress with different p.
p = 1.0 represents the default linear schedule introduced in
DDPM [9], where the forward process variances [3; increase
linearly from 10~* to 0.02. With p=0.8 and p=0.6, the
data coefficients & are lower at each timestep ¢, and the
amount of noise is therefore amplified.
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Figure 1: @, throughout the diffusion process with different p.

Architecture. We use the standard ViT architecture [5] in
base, large and huge sizes for the encoder. The encoder
is followed by Layer Normalization [1]. There is a linear
projection layer after the layer normalization to match the
dimension of the encoder to that of the decoder. We add si-
nusoidal positional embeddings to both the encoder and de-
coder inputs for pre-training. We do not use either relative
positional embedding [16] or layer scale [2]. The encoder
and the decoder use two different linear projections to han-
dle the clean and the noised (masked) inputs, respectively.

config ImageNet Kinetics
optimizer AdamW [14]
optimizer momentum 81, 2=0.9,0.95
weight decay 0.05
learning rate schedule cosine decay [13]
warmup epochs [7] 40
augmentation hflip, RandomResizedCrop
drop path [11] 0.0
base Ir 1.5e-4 8.0e-4
batch size 4096 512
epochs 1600 400
gradient clipping - 0.02
repeated aug. [10] - 4
(a) Pre-training setting.

ImageNet Kinetics
config ViT-B  ViT-L ViT-H ViT-L
optimizer AdamW [14]
optimizer momentum B1, B2=0.9,0.999
weight decay 0.05
learning rate schedule cosine decay [13]
warmup epochs [7] 5
augmentation RandAug (9, 0.5) [3]
mixup [22] 0.8
cutmix [21] 1.0
label smoothing [18] 0.1
end Ir 1.0e-6
batch size 1024 128
base Ir 5.0e-4 1.0e-3 1.0e-3 3.2e-3
layer decay [2] 0.65 0.7 0.75 0.75
base Ir (w/ CLIP) 2.0e-4 8.0e-4
layer decay (w/ CLIP) | 0.65 0.75 0.8 0.8
training epochs 100 50 50 50
drop path [11] 0.1 0.1 0.3 0.2
drop out [17] - 0.5
repeated aug. [10] - 2

(b) Fine-tuning setting.

Table 1: Configurations on IN-1K and Kinetics-400. In terms
of learning rate (/r), we use the linear scaling rule introduced in
[7]: Ir = base_lrxbatch_size / 256. When using repeated aug-
mentation, the number of epochs and batch size count the original
samples without repeating.



config from-scratch fine-tuning
optimizer AdamW [14]
optimizer momentum b1, f2=0.9,0.999
weight decay 0.02

learning rate schedule cosine decay [13]
warmup epochs [7] 10
augmentation RandAug(9, 0.5)
mixup [22] 0.8

cutmix [21] 1.0

label smoothing [18] 0.1

batch size 512

epochs 200

base Ir 1.0e-3

layer decay [2] - 0.8
drop path [11] 0.1 0.2

Table 2: Configurations of fine-tuning ADM [4] on IN-1K.

In terms of learning rate (Ir), we use the linear scaling rule intro-
duced in [7]: Ir = base_lrxbatch_size | 256. For fine-tuning, we
use ADM’s unconditional 2562 model trained on IN-1K.

During fine-tuning, we extract features from the encoder.
We use global average pooling to gather the patch features,
followed by a layer normalization and a linear classification
head. Both layer normalization and the linear head are ran-
domly initialized. Particularly, the linear head is initialized
with a very small standard deviation 2-5 which enhances
stability of fine-tuning.

Training recipes. The default settings for pre-training and
fine-tuning are in Table 1. We use a different base learning
rate and layer decay when fine-tuning CLIP-aided models.

A.2. Kinetics Experiments

Architecture. Given a video clip, we first divide it into
non-overlapping patches in spacetime. Positional embed-
dings are added to the embedded patches. The spacetime
patch size is 2 X 16 x 16 for ViT-L/16 and 2 x 14 x 14 for
ViT-L/14. The target of our DiffMAE is a single time slice
of the patch (16 x 16 or 14 x 14), and so are the correspond-
ing noisy inputs to the decoder [6]. Similar to the image
setting, the encoder and the decoder use two different linear
projections to handle the clean and the noisy (masked) in-
puts, respectively. We use 90% random masking sampling
on the spacetime patches [6].

We extract features from the encoder outputs for fine-
tuning. We use global average pooling to gather the patch
features, followed by a layer normalization and a linear
head. The linear head is initialized with a very small stan-
dard deviation 275, the same as the image setting. To
further enhance the results, we fine-tune the 16 x 2242
Kinetics-400 model to a longer duration 32 and a larger
resolution 2802 for a short schedule of 30 epochs without
repeated augmentation.

Training recipes. The default settings for pre-training and
fine-tuning are in Table 1. Note that many hyper-parameters
are shared by the image and the video models, showing that
DiffMAE is general across different domains. We search for
the best base learning rate and layer decay when fine-tuning
CLIP-aided models.

A.3. Fine-Tuning ADM

We fine-tune the pre-trained ADM [4] model to evalu-
ate the recognition ability of this well-designed diffusion
model. Specifically, we take its IN-1K unconditional 2562
version and fine-tune the model at resolution 2242 on IN-1K
classification for a fair comparison to other methods.

The ADM model uses a U-Net [15] architecture for
dense prediction. It consists of ResNet [8] blocks and self-
attention layers [20]. We fine-tune the input blocks and the
middle block, which are followed by a global average pool-
ing, a layer normalization, and a linear classification head
that projects the global averaged feature to classification
logits. The layer normalization and the linear head are ran-
domly initialized. Regarding the timestep input specifying
the noise level for diffusion generation, we simply fix the
timestep to 999 for classification fine-tuning, while other
numbers that are inside the range of the noise schedule, i.e.,
from 0 to 999, give similar training curves and results. We
also train the same model from scratch as the baseline to
show the effectiveness of diffusion generative pre-training.

Training recipes. We include the training recipes of fine-
turning and from-scratch training of ADM in Table 2. We
carefully tune the optimization hyper-parameters of both the
fine-tuning and the from-scratch training. The recipes are
based on sophisticated modern training techniques [19, 12],
and we tune base learning rate, layer-wise decay [2], and
drop path rate for each case.

B. Additional Qualitative Results

We provide more qualitative results of image generation
using ImageNet-1K validation images. Figs. 2 and 3 are
samples with 75% random masking. Figs. 4 and 5 are sam-
ples with the center block masking.

In Fig. 6, we provide visualizations on Diff MAE for
video generation on Kinetics-400 validation videos. For
a 16 x 224 x 224 video clip, we visualize the generated
frames at stride two on the temporal dimension, which
makes eight frames for each sample.
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Figure 2: Visualizations of Diff MAE generation with 75% random masking. The images are from IN-1K validation set

with size 2242. We show the reverse diffusion at t = 1000, 500, and 0. ¢t =0 is the final output. The model is ViT-L. Best
viewed in color with zoom.




ground-truth masked t = 1000 t = 500 ground-truth masked t = 1000 t = 500 t=20

Figure 3: Visualizations of Diff MAE generation with 75% random masking. The images are from IN-1K validation set
with size 2242. We show the reverse diffusion at t = 1000, 500, and 0. ¢t =0 is the final output. The model is ViT-L. Best
viewed in color with zoom.
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Figure 4: Visualizations of Diff MAE generation with center masking. The images are from IN-1K validation set. The
input images are of size 2562, with the center 1282 block masked. The model is ViT-L. Best viewed in color with zoom.
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Figure 5: Visualizations of Diff MAE generation with center masking. The images are from IN-1K validation set. The
input images are of size 2562, with the center 1282 block masked. The model is ViT-L. Best viewed in color with zoom.
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Figure 6: Visualizations of Diff MAE generation with video. The videos are from Kinetics-400 validation set with random
masking ratio 90%. We show the original video (fop), masked video (middle), and DiffMAE output (bottom) for each sample.
The model is ViT-L/14.
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