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1. NightCity-fine

NightCity-fine is a refined dataset for night-time seman-

tic segmentation, which aims to improve the quality of an-

notations in both the training and validation sets. This

dataset builds upon NightCity [5], which is the largest

dataset for night-time segmentation, and Nightcity+ [2], a

validation set based on NightCity. Our annotation pro-

cess begins by comparing the annotations in the NightC-

ity dataset with the original images, which identified a sig-

nificant number of missing labels and incorrectly labeled

regions. To address these issues, we utilized the graphi-

cal image annotation tool, Labelme [6], to accurately label

the previously missing regions and remove incorrect labels

from mislabeled regions.

As a result, we successfully eliminate 4747 mislabeled

regions and rectify 14288 missing labels with the appropri-

ate label, as depicted in Fig. 1. In total, we refined 84% of

the images in the dataset, and added 14228 shapes to each

category, including both things and stuff, as illustrated in

Fig. 2. Among them, traffic light and traffic sign have the

most significant numbers of 2981 and 2963, respectively.

We compared the pixel distributions of labeled regions in

NightCity and NightCity-fine, as shown in Fig. 3. As some

categories have significantly higher numbers of pixels than

others, we presented the distributions in log scale. Over-

all, our refined dataset has more balanced pixel distributions

of all classes than the original dataset, with more labeled

regions for traffic sign, traffic light, motorcycle, wall, and

pole, among others. A qualitative comparison of NightCity

and NightCity-fine dataset can be found in Fig. 4 and Fig. 5.

2. Study on guidance noise

We select two guidance noise distributions. The first

noise distribution is based on the Gaussian distribution rec-

ommended by [3], which is added to generated illumination

to prevent the model to produce an identity result. To be

* indicates equal contributions.
† Corresponding authors.

Figure 1. Error correction in datasets: a pie chart analysis of error

types and the ratio of refined images.
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Figure 2. The number of labels added to each category.

specific, we apply a noise N that follows the standard nor-

mal distribution N (0, 1). Subsequently, to account for the

smoothness and value range of illumination, we normalize

the noise N to the range of 0 to 1 and pass it through an av-

erage pooling layer with a kernel size of 16 and stride size of

16. Moreover, inspired by the work of [1,8], we also use the

normalized V channel of the input image in the HSV color

space as another guidance noise V . Similarly, this noise is

fed to a max pooling layer with a kernel size of 16 and a



Figure 3. Number of labels in each category before and after refining.

Table 1. Ablation Studies on the effects of different guide illumi-

nation. Random is random generated smooth noise, and Max is

the maximum channel of a random picture. The best scores are

indicated in bold.

Guidance Noise None N V N + V

mIoU(%) 61.6 63.9 62.7 64.2

Table 2. Detailed architecture of disentanglement model with dif-

ferent depths.

Disentangle model Small Base Large Huge

Downsample blocks 1 2 3 4

Residual blocks 1 2 3 4

Channels of Residual 64 128 256 512

Upsample blocks 1 2 3 4

Parameters 0.2M 1.5M 5.9M 26.8M

stride size of 16 to constrain its smoothness. By using these

two guidance noise distributions, we aim to prevent the dis-

entanglement module from learning a fixed transformation

and roughly guide it to generate valid illumination during

the initial training stage. Table 1 demonstrates the effec-

tiveness of both noise N and V . Our approach achieves

the best performance when both types of noise are applied

simultaneously.

3. Model architecture

Disentanglement model. The network architecture in-

cludes a stem layer, multiple downsampling convolution

layers, several residual blocks, two Swin blocks [4], a pyra-

mid pooling module [7], several upsampling convolution

layers, and two output convolution layers. The reflectance

is obtained by adding the output and input images. Tab. 2

displays the number of blocks at different depths.

IAParser. The proposed IAParser consists of several com-

ponents, including a reflectance segmentation model Mref

that can be substituted with an existing semantic segmenta-

tion network, an illumination segmentation model Mill that

adopts a pyramid pooling module architecture [7], a convo-

lution layer Wmask that calculates the attention mask, and

a convolution layer Wcls that transforms the features pro-

duced by Mref and Mill into semantic logits.

4. Algorithm

The training procedure of our DTP is summarized in

Algorithm 1, which is composed of semantic-oriented dis-

entanglement (SOD) and illumination-aware parser (IA-

Parser). For detailed equations and loss functions, please

refer to the main paper.

5. Qualitative results

Fig. 6, 7, and 8 showcase the reflectance and seman-

tic segmentation results produced by our proposed method.

Although the limited dataset scale and model parameters

resulted in incomplete disentanglement, which led to the

presence of redundant lighting-specific components in the

reflectance, our approach effectively enhances the model’s

ability to parse images and generate superior semantic seg-

mentation results. The observed improvement in both visual



Algorithm 1: Training process of DTP.

Input: disentanglement models: Mdis; reflectance segmentation model: Mref ; illumination segmentation mode: Mill;

convolution layers: Wmask,Wcls; maximum iteration T .

Output: finale network consists of Mdis,Mref ,Mill,Wmask,Wcls.

for t← 1 to T do

Get batch data: (Xj , Yj , Xx, Yk)

Rj , Ij = Mdis(Xj)
Rk, Ik = Mdis(Xk)
Get I ′j , I

′

k by Eq. (3)

Get Rs
j , I

s
j , R

s
k, I

s
k by Eq. (4)

Calculate Ldisentangle by Eq. (5)

for R, I,X in (Rj , Ij , Xj), (Rk, Ik, Xk), (R
s
j , I

s
j , Rj ⊙ I ′j), (R

s
k, I

s
k, Rk ⊙ I ′k) do

Calculate Lretinex(R, I,X) by Eq. (5)

Calculate Lsmooth(R, I) by Eq. (6)

for R, I, Y in (Rj , Ij , Yj), (Rk, Ik, Yk), (R
s
j , Ij , Yj), (R

s
k, Ik, Yk) do

Fill = Mill(I)
Fref = Mref (R)
Calculate Amask by Eq. (9)

Calculate Ỹ by Eq. (10)

Calculate Lsegill by Eq. (11)

Calculate Lseg by Eq. (12)

Optimize network

quality and mIoU metrics (refer to the main paper) supports

the effectiveness and competitiveness of our method.



Image

NightCity

NightCity-fine

Image

NightCity

NightCity-fine

Image

NightCity

NightCity-fine

Image

NightCity

NightCity-fine

Image

NightCity

NightCity-fine

Figure 4. Qualitative Comparison of NightCity dataset with NightCity-fine dataset.
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Figure 5. Qualitative Comparison of NightCity dataset with NightCity-fine dataset.



Image Reflectance Prediction Ground Truth

Figure 6. Qualitative Results of the reflectance and semantic segmentation outcomes produced by our proposed method.



Image Reflectance Prediction Ground Truth

Figure 7. Qualitative Results of the reflectance and semantic segmentation outcomes produced by our proposed method.



Image Reflectance Prediction Ground Truth

Figure 8. Qualitative Results of the reflectance and semantic segmentation outcomes produced by our proposed method.
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