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The following materials are provided in this supplemen-
tary file:

• Sec. A: more ablation studies of our ELITE (cf.
Sec. 4.2 in the main paper), including the value of
λ, layer indexes, local attention map reweighting, and
global mapping.

• Sec. B: more training and testing details (cf. Sec. 4.1
in the main paper).

A. More Ablation Studies
A.1. Effect of the value of λ

In Eqn. (6) of the main paper, λ is introduced to control
the fusion of information from the global mapping network
and the local mapping network. To evaluate its effect, we
vary its value from 0 to 1.2 during customized generation.
As shown in Fig. 7 of the main paper, with the increase of λ,
the consistency between the synthesized image and concept
image is improved. Meanwhile, from Fig. A in this supple-
mentary file, the image alignment (i.e., CLIP-I and DINO-I)
improves as λ increases. However, when the value of λ is
too large, it may lead to degenerated editing results, leading
to decreased text alignment (i.e., CLIP-T). Therefore, for a
trade-off between inversion and editability, we set λ = 0.6
for editing prompts and λ = 0.8 for generating prompts.
We find these parameters work well for most cases.

A.2. Effect of the layer indexes

In our experiments, we select the features of five lay-
ers of the CLIP image encoder to learn multiple word em-
beddings, whose indexes are {24, 4, 8, 12, 16} in order. We
have further conducted ablation studies by putting the deep-
est layer (i.e., layer 24) in different orders. Specifically,
we compare four variants. i) Single-layer Multi-words:
learning multiple word embeddings from the deepest fea-
ture separately. ii) Multi-layers Multi-words First: our
setting, learning multiple word embeddings from the mul-
tiple layer features separately, and the layer indexes are

Figure A. Ablation on the value of λ. As λ increases, the CLIP-
I and DINO-I improve, yet the text alignment (CLIP-T) slightly
deteriorates.

{24, 4, 8, 12, 16} in order. iii) Multi-layers Multi-words
Middle: learning multiple word embeddings from the mul-
tiple layer features separately, and the layer indexes are
{4, 8, 24, 12, 16} in order. iv) Multi-layers Multi-words
Last: learning multiple word embeddings from the mul-
tiple layer features separately, and the layer indexes are
{4, 8, 12, 16, 24} in order. Fig. B illustrates the visualiza-
tion of words learned by each variant. As shown in the fig-
ure, each variant contains one primary word that describes
the subject concept. When learning multiple word embed-
dings from multi-layer features, we observe that the primary
word is naturally linked to the features from the deepest
layer, regardless of the position indices of layers. Besides,
as illustrated in Fig. C, in contrast to the primary word ob-
tained by the single layer feature, the primary word learned
by multi-layer features is well-editable. Among them, our
setting achieves better editability, which is shown in Ta-
ble A.
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Figure B. Visualization of learned word embeddings for different variants. First, Middle, and Last denote the order of deepest feature
in learned word embeddings. The learned primary word is highlighted by red color.
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Figure C. Visual comparisons of different variants. [v] denotes the generation results with full word embeddings v, while [w] denotes
the generation results with the primary word embedding w (see Fig. B). The primary word learned by multi-layer features is well-editable.

A.3. Effect of local attention map reweighting

The local mapping network aims to inject the fine-
grained details of the given subject during generation. To
further emphasize its effect on the subject region rather
than irrelevant areas (e.g., background), we reweight the
obtained local attention map by multiplying it with the at-
tention map of primary word (refer to Sec. 3.3 in the main
paper):

Al = Al ∗
Ag

w0

max(Ag
w0)

, (1)

where Al = Softmax
(

QKlT

√
d′

)
denotes the attention map

of local mapping network and Ag = Softmax
(

QKgT

√
d′

)
de-

notes the attention map of global mapping network. d′ is the
output dimension of key and query features. Ag

w0
is the at-

tention map of primary word w0. To verify its effectiveness,
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Figure D. Cross-attention map visualization. We show the average attention across timestep and layers for each word embedding. The
attention map corresponding to the learned primary word w0 delineates the subject region.
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Figure E. Ablation of local attention map reweighting. Without the local attention reweighting, the learned model tends to be less editable.

Table A. Ablation study. [v] denotes the generated testing results
with full word embeddings v, while [w] denotes thee generated
testing results with the primary word embedding w. First, Middle,
and Last denote the position of word embedding with respect to
the deepest feature.

Method CLIP-T (↑) CLIP-I (↑) DINO-I (↑)

Single-Layer Multi-Words [v] 0.198 0.683 0.431
Single-Layer Multi-Words [w] 0.212 0.692 0.443
Multi-Layers Multi-Words Middle [v] 0.211 0.726 0.592
Multi-Layer Multi-Words Middle [w] 0.249 0.673 0.444
Multi-Layers Multi-Words Last [v] 0.217 0.722 0.585
Multi-Layers Multi-Words Last [w] 0.247 0.694 0.474
Multi-Layers Multi-Words First [v] 0.204 0.771 0.658
Multi-Layer Multi-Words First [w] 0.257 0.699 0.486

we firstly visualize the cross-attention map of each word in
input text prompt in Fig. D. As one can see, the learned pri-
mary word w0 is associated with the subject concept and
its attention map Ag

w0
accurately delineates the subject re-

gion, so we can leverage it to reweight the local attention
map Al. Furthermore, as illustrated in Fig. E, without the

local attention reweighting, the features of local mapping
network may affect the subject-irrelevant areas, resulting in
degraded editability. In contrast, our ELITE with reweight-
ing strategy reduces the disturbances on subject-irrelevant
areas, and achieves better editability.

A.4. Effect of global mapping

We have further conducted the ablation study to evaluate
the effect of our global mapping network. For comparison,
we remove the global mapping network, while replace the
pseudo word S* with a ground-truth category word to learn
the local mapping network (e.g., S* → dog in Fig. F). As
shown in Fig. F, without the global mapping, using the lo-
cal mapping network only provides a few fine-grained de-
tails (e.g., fur color), yet fails to keep the structure of the
concept (e.g., ear). In contrast, by adding global mapping
network to encode a suitable primary word embedding, our
ELITE faithfully recovers the target concept with higher vi-
sual fidelity while enabling robust editing.
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Figure F. Ablation of global mapping network. With the global mapping network, our ELITE faithfully recovers the target concept with
higher visual fidelity while enabling robust editing.

B. More Experimental Details
B.1. Training Details

Textual Inversion [1]. We use the official stable diffusion
version of Textual Inversion1. For each subject, experiment
is conducted with the batch size of 1 and a learning rate of
0.005 for 5,000 steps. The new token is initialized with the
category word, e.g., “cat”.
Custom Diffusion [2]. We use the official implementa-
tion of Custom Diffusion2. We train it with a batch size
of 1 for 300 training steps. The learning rate is set as 1e-
5. The regularization images are generated with 50 steps of
the DDIM sampler with the text prompt “A photo of a
[category]”.
DreamBooth [3]. We use the third-party implementation
of DreamBooth3. Training is done with finetuning both
the U-net diffusion model and the text transformer. The
training batch size is 1 and the learning rate is set as 1e-
6. The regularization images are generated with 50 steps of
the DDIM sampler with the text prompt “A photo of a
[category]”. For each subject, we train it for 800 steps.

B.2. Testing Datasets

For customized generation, we adopt concept images
from existing works [1–3] with 20 subjects, including dog,
cat, and toy, etc. Fig. G illustrates the full image samples.

B.3. Text prompts

We adopt the text prompt list used in Textual Inver-
sion [1] for training, which is provided as below:

• “a photo of a S∗”,
1https://github.com/rinongal/textual inversion
2https://github.com/adobe-research/custom-diffusion
3https://github.com/XavierXiao/Dreambooth-Stable-Diffusion

Figure G. Testing image samples.

• “a rendering of a S∗”,
• “a cropped photo of the S∗”,
• “the photo of a S∗”,
• “a photo of a clean S∗”,
• “a photo of a dirty S∗”,
• “a dark photo of the S∗”,
• “a photo of my S∗”,
• “a photo of the cool S∗”,
• “a close-up photo of a S∗”,
• “a bright photo of the S∗”,
• “a cropped photo of a S∗”,
• “a photo of the S∗”,
• “a good photo of the S∗”,
• “a photo of one S∗”,
• “a close-up photo of the S∗”,
• “a rendition of the S∗”,



Table B. Text prompt list for quantitative evaluation.

Text prompts for non-live objects Text prompts for live objects

“a S∗in the jungle” “a S∗in the jungle”
“a S∗in the snow” “a S∗in the snow”
“a S∗on the beach” “a S∗on the beach”
“a S∗on a cobblestone street” “a S∗on a cobblestone street”
“a S∗on top of pink fabric” “a S∗on top of pink fabric”
“a S∗on top of a wooden floor” “a S∗on top of a wooden floor”
“a S∗with a city in the background” “a S∗with a city in the background”
“a S∗with a mountain in the background” “a S∗with a mountain in the background”
“a S∗with a blue house in the background” “a S∗with a blue house in the background”
“a S∗on top of a purple rug in a forest” “a S∗on top of a purple rug in a forest”
“a S∗with a wheat field in the background” “a S∗wearing a red hat”
“a S∗with a tree and autumn leaves in the background” “a S∗wearing a santa hat”
“a S∗with the Eiffel Tower in the background” “a S∗wearing a rainbow scarf”
“a S∗floating on top of water” “a S∗wearing a black top hat and a monocle”
“a S∗floating in an ocean of milk” “a S∗in a chef outfit”
“a S∗on top of green grass with sunflowers around it” “a S∗in a firefighter outfit”
“a S∗on top of a mirror” “a S∗in a police outfit”
“a S∗on top of the sidewalk in a crowded street” “a S∗wearing pink glasses”
“a S∗on top of a dirt road” “a S∗wearing a yellow shirt”
“a S∗on top of a white rug” “a S∗in a purple wizard outfit”
“a red S∗” “a red S∗”
“a purple S∗” “a purple S∗”
“a shiny S∗” “a shiny S∗”
“a wet S∗” “a wet S∗”
“a cube shaped S∗” “a cube shaped S∗”

• “a photo of the clean S∗”,
• “a rendition of a S∗”,
• “a photo of a nice S∗”,
• “a good photo of a S∗”,
• “a photo of the nice S∗”,
• “a photo of the small S∗”,
• “a photo of the weird S∗”,
• “a photo of the large S∗”,
• “a photo of a cool S∗”,
• “a photo of a small S∗”,

For qualitative evaluation, we employ the editing tem-
plates used in [1–3]. For quantitative evaluation, we employ
the editing prompts from DreamBench [3], which contains
25 editing prompts for each subject. The full prompts are
listed in Table B.
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