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1. Implementation Details
For the generation of all optimization-based proxies, we

set the learning rate to 0.01 and use the Adam [3] optimizer.
For text proxy, the overall loss in the optimization process
is defined as follows: Ltext = λclipLclip + λposeLpose +
λshapeLshape, where λclip, λpose, and λshape are set to 1,
200, and 1 respectively to make each loss balance. For the
start point strategy for optimization of text proxy, we set
ψ = 0.3 to ensure that the initial optimization starting point
winit is around the average face latent codewmean. For ref-
erence proxy, The overall loss of hairstyle transfer is defined
as follows: Lref = λstyleLstyle+λposeLpose+λregLreg+
λshapeLshape, where λstyle, λpose, λreg, and λshape are set
to 2000, 200, 1, and 1 respectively to make each loss bal-
anced.

For sketch proxy, the number of training iterations for the
sketch2hair translation inverter T for local hairstyle edit-
ing is 500, 000. The training loss includes regular pixel-
level L2 loss Lmse = ||Isketch −G(T (S))||22, feature-level
LPIPS [13] loss LLPIPS = ||F (Isketch)−F (G(T (S)))||22,
where S represents the hairstyle sketch input, Isketch stands
for the hair image corresponding to the hairstyle sketch S, T
means the sketch2hair invertor to be trained, and F denotes
the AlexNet [4] feature extractor. To provide more local su-
pervision, we additionally use multi-layer face parsing loss
Lm par which provides more detailed knowledge by intro-
ducing multi-layer features from the pre-trained face pars-
ing network:

Lm par =

5∑
i=1

(1− cos(Pi(I
sketch), Pi(G(T (S))))), (1)

† Wenbo Zhou is the corresponding author. Our code is available at
https://github.com/wty-ustc/HairCLIPv2.

where Pi(I
sketch) represents the feature corresponding to

the i-th semantic level from the face parsing network P [5]
of the hair image Isketch. The overall training losses are as
follows:

Lsketch = λmseLmse+λLPIPSLLPIPS +λm parLm par,
(2)

where λmse, λLPIPS , and λm par are set to 0.5, 0.8, and 1,
respectively.

2. Quantitative Results
2.1. Editing Speed

We compare the editing runtime with competitive meth-
ods in Table 1. We are faster than baseline methods in hair
transfer and sketch-based editing. For text-based editing,
we are slower but with better editing quality and irrelevant
attributes preservation. Moreover, only our method excels
at the task of hair editing with arbitrary text.

Text Ours(35.2) TediGAN(28.0) HairCLIP(0.10)
Transfer Ours(58.9) Barbershop(117.8) SYH(136.8)
Sketch Ours(0.04) MichiGAN(0.42) SketchSalon(0.14)

Table 1. Editing Runtime on 2080 Ti (seconds).

3. Ablation Analysis
3.1. Necessity of Balding Steps

We employ two key steps during the process of convert-
ing the input image into bald proxy: first, editing the latent
code of the input image to obtain its balded latent code; sec-
ond, performing feature blending between the balded fea-
tures and the original features of the input image to preserve
the irrelevant attributes from being modified as shown in Eq.
1 of the main text. To verify the necessity of these two steps,

https://github.com/wty-ustc/HairCLIPv2


we perform experiments on the following two variants: (A).
without balding, i.e., step 1 is skipped and Eq. 1 of the main
text becomes F bald

7 = F src
7 ; (B). without feature blending

with original image after balding, i.e., Eq. 1 of the main
text becomes F bald

7 = G(wbald
1−7). The visual comparison

results are shown in Figure 1. Since variant A does not em-
ploy the balding method to de-obscure, there are obvious
artificial artifacts caused by blending the bald proxy fea-
tures with the editing proxy features. Although the result of
variant B looks relatively natural overall, the editing of the
1-dimensional latent code inevitably modifies other irrele-
vant attributes (background, identity, etc.). Combining the
advantages of these two steps, our default setting achieves
both the natural editing effect resulting from the balding op-
eration to de-obscure while inpainting the hair area sensibly
and the excellent irrelevant attribute preservation caused by
feature blending.

Input Image w/o Balding (A) w/o Blending (B) Ours

Figure 1. Ablation analysis on the necessity of balding steps. The
text description is “Mohawk Hairstyle”.

3.2. Robustness of Balding Technique

Our system uses HairMapper [10] in the first step of gen-
erating bald proxy to baldify the input image and thus re-
move the occlusion and facilitate feature blending with the
editing proxy later. In Figure 2, we illustrate the results of
the balding technique [10] and our method under extreme
lighting, pose, and self-occlusion conditions. Obviously,
the balding technique performs relatively robustly in most
extreme conditions. In the case of the self-occlusion condi-
tion, the balding technique shows significant artifacts at the
hand position, while our method is not affected because of
the feature blending mechanism adopted in the second step
of generating the bald proxy.

4. Limitations
Despite the unprecedented unification, our method has

some limitations. For example, our method only focuses on
image hair editing, and cannot handle facial hair or coherent
video hair editing. Moreover, our method cannot perfectly
transfer the reference color for some cases (e.g., slight color
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Figure 2. Ablation analysis on the robustness of balding technique.
The text description is “Bowl Cut Hairstyle”.

bias in Fig. 3), especially when the lighting is very different.
Lastly, for some conditions our method still gets the proxy
by optimization, thus real-time generation of all proxies is
the future research direction.

Input Image Color Ref Result Input Image Color Ref Result

Figure 3. Failure cases.

5. More Qualitative Results

In Figures 4, 5, 6, 7, 8, and 9 we give more visual com-
parison results with other methods and our results for the
comprehensive cross-modal conditional inputs.
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Figure 4. Visual comparison with HairCLIP [9], StyleCLIP-Mapper [6], TediGAN [11] and DiffusionCLIP [1]. The simplified text de-
scriptions (editing hairstyle, hair color, or both of them) are listed on the leftmost side. We additionally provide an example image for
each description for better comparison. Our approach demonstrates better editing effects and irrelevant attribute preservation (e.g., identity,
background, etc.).
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Figure 5. Visual comparison with HairCLIP [9], StyleCLIP-Mapper [6], TediGAN [11] and DiffusionCLIP [1]. The simplified text de-
scriptions (editing hairstyle, hair color, or both of them) are listed on the leftmost side. We additionally provide an example image for
each description for better comparison. Our approach demonstrates better editing effects and irrelevant attribute preservation (e.g., identity,
background, etc.).



Input Image Hairstyle Ref Color Ref Ours HairCLIP [9] LOHO [7] Barbershop [14] SYH [2] MichiGAN [8]

Figure 6. Visual comparison with HairCLIP [9], LOHO [7], Barbershop [14], SYH [2] and MichiGAN [8] on hair transfer. Only our
method and SYH can accomplish unaligned hair transfer while keeping irrelevant attributes unmodified.



Input Image Input Sketch Ours MichiGAN SketchSalon

Figure 7. Qualitative comparison with MichiGAN [8] and SketchSalon [12] on sketch-based local hair editing. We provide sketches drawn
in the facial parsing map for better visualization.
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Figure 8. Qualitative comparison with HairCLIP on cross-modal conditional input setting. Our approach exhibits better editing effects and
excellent preservation of irrelevant attributes. The first column are the input images.
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Figure 9. HairCLIPv2 supports hairstyle and color editing individually or jointly with unprecedented user interaction mode support, in-
cluding text, mask, sketch, reference image, etc.


