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A. Implementation Details
A.1. Dictionary Construction

In Section 3.1, we employ a pre-trained CSLR model to
partition the continuous sign videos into isolated sign clips.
Here we describe the partition algorithm as follows.

To construct a dictionary C for a dataset D with an al-
phabet S. Given a training video v = (v1, . . . ,vT ) ∈ D
containing T frames and its associated ground-truth sign se-
quence s = (s1, . . . , sN ), si ∈ S , a well-trained CSLR
model produces a frame-wise prediction sequence y =
(y1, . . . ,yT ) in which yt ∈ R|S′| is a probability distri-
bution over the expanded alphabet S ′ = S ∪ {blank} for
the t-th frame1. Therefore, the probability of a frame-wise
sequence π1:T = (π1, . . . , πT ) where πt ∈ S ′, can be com-
puted as

p(π1:T | v) =
T∏

t=1

yt(πt), (1)

where yt(πt) indicates the probability of observing label πt

at timestamp t.
A frame-wise sequence π1:T can be mapped to a sign

sequence by removing blank predictions and deduplicating
the repeated non-blank predictions. For a label sequence s,
we use Π(s) to denote the set of frame-wise sequences that
are mapped to s and call π1:T ∈ Π(s) as an alignment path
of s. We illustrate the relationship between the label se-
quence s and its possible alignment paths π1:T in Figure 1.
Now we need to find the optimal alignment path π∗

1:T as

π∗
1:T = argmax

π1:T∈Π(s)

p(π1:T | v). (2)

π∗
1:T can be efficiently searched by the dynamic time

warping (DTW) algorithm [1]. Formally, to accommodate
blank predictions in the alignment path, we first extend the
label s of length N to s′ of length 2N + 1 by interleaving
its items with blank:

s′1:2N+1 = (blank, s1, blank, s2, . . . , blank, sN , blank).

1Since there is a downsampling layer in our CSLR network, the length
of the output sequence is T/4. We temporarily upsample it by a factor of
four to match the length of input v.

Algorithm 1 Find the optimal alignment path

Input: frame-wise probabilities y; extended label s′

Output: the most probable alignment path π∗
1:T

for i← 1 to 2N + 1 do ▷ Set the initial condition
if i ∈ {1, 2} then

m(1, i) = y1(s
′
i)

else
m(1, i) = 0

end if
end for
for i← 1 to 2N + 1 do ▷ Iterative computation

if i = 1 then
G(i) = {i}

else if s′i is blank or i = 2 or s′i = s′i−2 then
G(i) = {i− 1, i}

else
G(i) = {i− 2, i− 1, i}

end if
for t← 2 to T do

m(t, i) = yt(s
′
i)maxj∈G(i) m(t− 1, j)

end for
end for
i← argmaxj∈{2N,2N+1} m(T, j) ▷ Backtracking
π∗
T ← i

for t← T − 1 to 1 do
i← argmaxj∈G(i) m(t, i)
π∗
t ← i

end for
return π∗

1:T = (π∗
1 , . . . , π

∗
T )

In order to find the optimal path by Eq. 2, we define an in-
termediate variable m(t, i) as the probability of the optimal
path associated to the first t frames of sign video v with sign
sequence label s′1:i:

m(t, i) = max
π1:t∈Π(s′

1:i)
p(π1:t|v), (3)

where p(π1:t|v) is formulated by Eq. 1. Then the proba-
bility of the optical alignment path π∗

1:T can be calculated
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Figure 1: Illustration of partitioning a continuous sign video into the isolated sign clips. Given an input video v and its
associated ground-truth sign sequence s, we show three possible alignment paths (i.e. Alignment Path-1/2/3) with respect
to s. The probability of each alignment path can be computed by Eq. 1. The optimal alignment path is the one with
the maximal probability. After removing blank predictions and deduplicating the repeated non-blank predictions from the
optimal alignment path, we could partition the input video into a collection of isolated sign clips.
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Figure 2: Illustration of the dynamic programming al-
gorithm. Each node represents an intermediate variable
m(t, i) defined by Eq. 3. We iteratively compute the value
of each node, as shown by the arrows. The probability of
the optimal alignment path π∗

1:T is calculated by Eq. 4. Af-
ter that, we could easily backtrack π∗

1:T , as highlighted by
the red nodes. Refer to Algorithm 1 for the whole process.

by:

max
π1:T∈Π(s)

p(π1:T | v) = max
j∈{2N,2N+1}

m(T, j). (4)

Eq. 3 can be computed recursively using dynamic program-
ming (DP) as each m(t, i) is a function of several earlier val-
ues. After obtaining the result of Eq. 4, we can seek out the
optical alignment path π∗

1:T that gives rise to the maximum
probability by backtracking. We illustrate the computation
procedure in Figure 2. The details are also formulated in

Dataset Frames Train Dev Test Vocab.

Phoenix-2014 [8] 8.3 65,227 5,607 6,608 1231
Phoenix-2014T [2] 8.8 55,247 3,748 4,264 1085
CSL-Daily [11] 9.0 133,714 8,173 9,002 2000

Table 1: Statistics of the constructed isolated sign dictionar-
ies produced by partitioning the continuous datasets (See
Section 3.1). We show the average length of the segments
(isolated signs), the number of segments in the Train/De-
v/Test splits, and the vocabulary size for each dataset.

Algorithm 1, which includes the initial condition, the Bell-
man equation for the DP algorithm, and how to backtrack
the optical alignment path π∗

1:T .

We find that among the estimated π∗
1:T , many frames are

predicted to be blank. For an isolated sign si ∈ s in the
label sequence, if we only take the frames whose predic-
tions in π∗

1:T are si as the video clip for si, the resulting
isolated video clips may be fairly short and not encompass
the entire duration of that sign. To address this issue, we
adopt the following strategy to find the video segment for
si ∈ s. First, we find the consecutive frames whose pre-
dictions are exactly si in the optimal alignment path π∗

1:T .
Then, we expand their left and right boundaries by includ-
ing more blank frames whose predicted probability for si is
the highest when the blank class is excluded. This approach
yields an average length of 9 frames for an isolated segment.
Table 1 shows the statistics of the constructed isolated sign
dictionaries.



A.2. CSLR

For continuous sign language recognition (CSLR),
we re-use the architecture and training procedure of
TwoStream-SLR [3] except that we add an auxiliary dataset
into the training dataset. We summarize our implementa-
tions as follows.

Architecture. TwoStream-SLR [3] contains two indepen-
dent sub-networks to model RGB videos and estimated
keypoint sequences. The keypoints are estimated by an
HRNet [9] trained on COCO-WholeBody [5]. Each of
the two sub-networks is an S3D [10] backbone (only the
first four blocks are used) pretrained on Kinetics-400 [6].
TwoStream-SLR also adopts bidirectional lateral connec-
tion, sign pyramid network and separate classification
heads. Please refer to the original paper [3] for more de-
tails.

Training. The training of our CSLR model consists of
two stages. In the first stage, we separately pre-train
the SingleStreamSLR-RGB/-keypoint using a single CTC
loss [4] without sign pyramid network and bidirectional lat-
eral connection. In the second stage, we load the pre-trained
SingleStreamSLR networks and train the TwoStreamSLR
using the CTC loss [4] and a set of auxiliary losses pro-
posed in [3]. In each stage, we use the Adam optimizer [7]
with β1 = 0.9, β2 = 0.998,weight decay = 1e − 3 and a
cosine learning scheduler to train the network for 40 epochs
with a batch size of 8 and a learning rate of 1e− 3. For our
cross-lingual method, we mixDA→P andDP with α = 0.2
defined in Equation 5.

Inference. During inference, the final prediction is decoded
into a sign sequence by CTC beam decoding [4]. We use a
beam width of 5.

A.3. ISLR

Here we describe the architecture and training details of
the isolated sign language recognition (ISLR) model we use
for cross-lingual mapping.

Architecture. We adopt a TwoStream-ISLR architecture
similar to the TwoStream-CSLR. The differences include:
(1) the TwoStream-ISLR uses five blocks of the S3D net-
work; (2) the sign pyramid networks are discarded; (3) a
pooling layer is appended.

Training. The two S3D backbones in our TwoStream-ISLR
are pre-trained on Kinetics-400 [6]. We train the whole net-
work for 100 epochs with a batch size of 32 and a learn-
ing rate of 1e − 4. We use the Adam optimizer [7] with
β1 = 0.9, β2 = 0.998,weight decay = 1e − 3 and a
cosine learning schedule. We adopt the label smoothing
with a smoothing weight of 0.2. We pad or truncate the

input segments into the length of 16 and apply augmen-
tation including random spatial crop and random temporal
sampling. We remove sign classes of frequency lower than
8 for Phoenix-2014 and Phoenix-2014T and 20 for CSL-
Daily during training. This reduces their vocabulary size
from 1231/1085/2000 to 428/389/981 respectively.

Inference. During inference, we evenly pad or truncate in-
put videos to the length of 16. We forward samples of all
classes to compute their cross-lingual predictions.

B. Visualization of Cross-lingual Signs
We illustrate more examples of the cross-lingual signs

from CSL-Daily and Phoenix-2014T identified by our
method in Figure 3, where we sort the examples by their
cross-lingual prediction confidences.

First, we observe that all pairs of cross-lingual signs
share similar visual cues, primarily the shape and move-
ment of the hands. Furthermore, there appears to be a gen-
eral trend where signs with higher confidence levels ex-
hibit more detailed similarities. For example, in either Fig-
ure 3a or Figure 3b, the right hands of the two signers
move similarly, while their left hands exhibit distinguish-
able patterns. In contrast, cross-lingual signs with confi-
dence scores higher than 0.5, as depicted in Figure 3e-3h,
not only share comparable hand orientations but also ex-
hibit similar finger patterns and even facial expressions.

Next, cross-lingual signs usually carry distinct word
meanings. For examples, “面包 (Bread)” is mapped to
“KOMMEND(Coming)” and “停 (Stop)” is mapped to
“MAXIMAL (Maximal)”. This demonstrates that DGS and
CSL are mutually unintelligible. However, we also observe
that some cross-lingual pairs convey identical meanings,
e.g. “零 (Zero)” and “NULL(Zero)”, or close meanings,
e.g. “下 (Down)” and “TIEF(Deep)”. This interestingly
suggests that different deaf communities may share a com-
mon understanding of some semantic concepts regardless
of their cultural and geographical difference and thus invent
similar visual cues to convey some meanings.

C. Discussion
Limitations and Future Directions. Although our method
is the first to demonstrate the effectiveness of cross-lingual
transfer in CSLR, it requires both the primary dataset and
the auxiliary dataset to have sequence-level annotations.
Due to the limited number of labeled CSLR datasets, we
are currently only able to apply our cross-lingual method
to two sign languages, namely CSL and DGS. However, in
the future, we aim to expand our approach to encompass a
wider range of languages as more CSLR datasets become
available. Additionally, we are excited to explore ways to
utilize more cross-lingual data that lack labels so as to fur-
ther enrich the training sources.



CSL: 不相信 (Don’t believe)

DGS: KOMMEND (Coming)
(a) Confidence: 0.1

CSL: 零 (Zero)

DGS: NULL (Zero)
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(b) Confidence: 0.2

CSL: ⼤⾬ (Storm)

DGS: REGEN (Rain)
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(c) Confidence: 0.3

CSL: 下 (Down)

DGS: TIEF (Deep)
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(d) Confidence: 0.4

CSL: ⾯包 (Bread)

DGS: NASS (Wet)
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(e) Confidence: 0.5

CSL: 机场 (Airport)

DGS: MITTE (Center)
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(f) Confidence: 0.6

CSL: 吸烟 (Smoking)

DGS: WIE-AUSSEHEN (How-look)

add_text_副本

(g) Confidence: 0.7

CSL: 停 (Stop)

DGS: MAXIMAL (Maximal)
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(h) Confidence: 0.8

Figure 3: We show some examples of cross-lingual signs between Chinese sign language (CSL) and German sign language
(DGS) using videos from CSL-Daily and Phoenix-2014T. We sort them by the cross-lingual prediction confidence. In general,
higher confidence indicates higher similarity between the signs. Cross-lingual signs usually convey distinct meanings but
occasionally share the same meaning, e.g. both express ‘zero’ in Figure 3b.



Broader Impacts. With the variation in sign languages
across different regions, it has been a challenge to develop
recognition systems that can cater to the needs of various
deaf communities. However, our findings show that despite
these variations, visually similar signs can be leveraged to
improve the performance of such systems. This is particu-
larly beneficial for under-represented deaf communities that
have low-resource training data. Furthermore, our work has
the potential to contribute to the broader field of sign lin-
guistics. By identifying the commonalities and differences
between different sign languages, we can enhance cross-
cultural communication among deaf communities.
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