
Appendix

Model Card of DualMind

Model Details
Model Type Encoder-Decoder Transformer (Enc-Dec Control Transformer), built upon a ViT en-

coder [12], a TokenLearner [34], and a Control Transformer [36].
Training Process The training process is divided into two phases. In Phase I, the entire Enc-Dec Control

Transformer is trained with a self-supervised training objective. In Phase II,a small
part of the model is trained using imitation learning with prompt conditions. The
detailed training objective is described in Sec. 4.2.

Model Version Initial release.

Intended Uses
Primary Intended Uses The proposed model aims to perform a wide range of control tasks spanning multi-

ple domains, visual scenes and embodiments. Our intention is to create a general-
purpose decision-making solution capable of handling various tasks using a single set
of weights, without requiring task-specific fine-tuning.

Factors
Relevant Factors Multiple factors can influence the performance of the model. First, the quality of

training dataset has influence on the results, including task diversity, behavior pol-
icy performance, data volume, etc. Second, model implementation hyperparameter
setting, and training objectives will also alter the final performance.

Evaluation Factors We report the performance of the model in multiple sets of tasks, and conducted abla-
tion study in Sec. 5.3.2.

Metrics
Model Performance Mea-
sures

Our downstream task performance is measured using success rate, SPL, and expert
score, as detailed in Sec. A.5. The expert score is calculated in the same manner as
GATO [32], while using a different dataset.

Decision thresholds N/A
Approaches to Uncertainty
and Variability

The model evaluation process inevitably involves uncertainties. In order to reduce
the variance introduced during the evaluation, we employed 3 random seeds for the
Habitat evaluation and 10 random seeds for the Metaworld evaluation.

Evaluation Data
Datasets Our DualMind is evaluated on multiple control tasks from Habitat and Metaworld.

Both in-distribution and out-of-distribution tasks are considered. Habitat: Our exper-
iments are focused on the ImageNav task, we chose 4 scenes . We hold out 5 Gibson
scenes for the experiments of out-of-distribution tasks, as detailed in Sec. A.5. Meta-
world: We select 45 training tasks on ML45 for the experiments of evaluation, and
hold out 5 test tasks for the experiments of out-of-distribution, as detailed in Sec. A.5.

Motivation Our evaluation of DualMind consists of two components. First, we evaluated its per-
formance on in-distribution tasks to understand how well it handles tasks across do-
mains, scenes, and embodiments using a single set of model weights. Second, we
evaluated DualMind on out-of-distribution tasks to assess its ability to adapt to en-
tirely new tasks.

Preprocessing Observations are tokenized into the same embedding sequence before being input to
transformer decoder, as detailed in Sec. 4.1.

Training Data
Datasets The model is trained using 100K episodes collected from Habitat and Metaworld,

with 50k episodes (⇠3.26M interaction steps) on Habitat and 50K episodes (⇠3.82M
interaction steps) on Metaworld, respectively.



Motivation In order to ensure that DualMind can handle tasks across domains, scenes, and em-
bodiments, we collected data for all tasks in Metaworld and all scenes in Habitat. The
data collection process is detailed in Sec. A.3.

Preprocessing The multi-domain data is tokenized into the same embedding sequence before being
fed to the transformer decoder, as detailed in Sec. 4.1.

Quantitative Analyses
Unitary Results We evaluated the performance of DualMind on the Metaworld and Habitat bench-

marks. In Sections 5.2 and 5.3.1, we demonstrate the general capabilities of DualMind
across both Metaworld and Habitat tasks. Additionally, in Section 5.3.2, we analyze
its performance on out-of-distribution tasks.

Ethical Considerations
Data Our data is collected from simulators of navigation and manipulation, and thus it does

not include any unethical data.
Risks and Harms Our current training and evaluation are conducted in simulators, and do not involve

physical robots where model malfunctioning could lead to safety issues.
Mitigations N/A

Caveats and Recommendation
Future work Our future work includes expanding DualMind to more domains and tasks, finding

efficient solutions for handling longer context lengths in demonstrations, and enabling
practical training in online interactive scenarios.

Table 3: Model card of DualMind, following the framework proposed by [23].

A. Implementation details
A.1. Model and hyperparameters

In this section, we provide a summary of the architecture and hyperparameters used in the Encoder-Decoder Control
Transformer. Our model consists of a ViT encoder, a TokenLearner, and a Control Transformer. The Control Transformer
we use is composed of 8 causal attention layers with 8 attention heads, 8 cross-attention layers with 8 attention heads, and an
embedding dimension of 512. The ViT encoder is ViT-B/16 and we load pretrained weights from MultiMAE [3]. Instead of
using mean pooling and a linear projection layer, we employ a TokenLearner that subsamples the 196 patch tokens output by
the ViT encoder to 8 tokens, which are then passed to the Transformer decoder layers.

For both Phase I and Phase II, we utilize the default AdamW optimizer [20]. For Phase I, the learning rate and batch size
are set to 5e-5 and 16, respectively, while for Phase II, they are set to 1e-4 and 128, respectively. Additionally, a context
length of 6 is used in all models for both training and execution. Phase I has 175M trainable parameters while Phase II has
51.1M trainable parameters. All models are trained for 10 epochs in Phase I, and 10 epochs for Phase II, with additional
training details provided in Sec. A.4.

A.2. Baselines architecture
We summary the differences between DualMind and Baselines in Table 4. The details of Baselines are listed below.

A.2.1 IL-only, SMART-only and Jointly.

The models IL-only, SMART-only, and Jointly all employ the same architecture as DualMind during Phase II.
This architecture encompasses a Transformer encoder (with State and Action tokenizers), a decoder, and a XAtten. layer.
The only difference between them is the modification of the training objectives and phase.

The IL-only model focuses solely on prompt-conditioned imitation learning during its training process. In contrast,
the SMART-only model leverages SMART training objectives in a purely self-supervised learning context with prompt-
conditioning. The Jointly model synthesizes these methods, employing both SMART objectives and prompt-conditioned
imitation learning loss in its comprehensive training strategy.



Training objectives Model structure Dual-phase

DualMind Phase I: Self-superv. Phase I.:Enc-Dec Control Transformer 3
Phase II: IL-prompt Phase II: +XAtten.

IL-only IL-prompt Enc-Dec Control Transformer +XAtten. 7
SMART-only Self-superv. prompt Enc-Dec Control Transformer +XAtten. 7
Jointly Self-superv. + IL-prompt Enc-Dec Control Transformer +XAtten. 7
GATO-CT IL-prompt Enc-Dec Control Transformer 7
GATO* IL-prompt GATO [32] 7

Table 4: Comparisons of different baselines.
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Figure 11: The architecture diagram of GATO-CT.

A.2.2 GATO-CT and GATO*

GATO*: GATO [32] (In this paper, we use GATO* to denote) is decode-only model, which imitates expert demon-
strations from a vast dataset by prompting the model with the state and action subsequence. This model has 1.18 billion
parameters and was trained on massive datasets, including 94.6k episodes from Metaworld. We include its reported perfor-
mance on the Metaworld benchmark for reference.

GATO-CT: For a fair comparison, we used the same base model architecture (Enc-Dec Control Transformer), but
replaced our XAtten.-based prompting approach with their proposed prefix prompting approach, denote as GATO-CT. Similar
to IL-only, only imitation learning loss is used to predict future actions, But replace the XAtten. module with one that
prefixes the model with prompt token. Details are provided in Fig. 11.

A.3. Data collection
Habitat. We collect shortest path episodes sampled from each of the 72 Gibson [39], 61 mp3d [8] and 800 hm3d [31]

training scenes. These demonstrations are generated by greedily fitting actions to follow the geodesic shortest path to the
nearest navigable goal object viewpoint. We hold out 5 Gibson scenes (hominy, Goffs, Hillsdale, Micanopy, and Rosser) for
the experiments of out-of-distribution. The data we collected included RGB images (3⇥ 224⇥ 224), goal, and actions. We
collected about 1000 episodes for each scene. Then, we divided the dataset and created the following dataset based on their
intended purposes.

• Habitat 50k. We select all scenes of the Habitat dataset, and randomly sample about 50 episodes pre scene from the
Habitat dataset. This data has 50K episodes and about ⇠3.26M interaction steps. The dataset is used in Phase I and
Phase II training.

• Habitat 10k. We randomly select 10 scenes of Habitat scenes, and randomly sample 1000 episodes pre scene from the
Habitat dataset. This data has 10K episodes and about ⇠0.54M interaction steps. The dataset is used to train the model
in Phase II of the ablation study.

• Out-of-distribution tasks. We select 5 Gibson scenes (”Goffs”, ”Hominy”, ”Hillsdale”, ”Micanopy”, and ”Rosser”)
held out, and randomly sample 10, 100, and 1000 episodes pre scenesfrom the Habitat dataset.



Metaworld. We collected data for all tasks in the MT50 [40] using scripted policies, which allowed us to generate expert
demonstrations across an unlimited number of environment seeds. The data we collected included RGB images (3×224×224)
rendered by the physical simulator, physics engine states, and actions. We collected 2000 episodes for each tasks. We use 45
tasks in the ML45 for Phase I, and hold out other 5 tasks (hand-insert-v2, door-lock-v2, door-unlock-v2, box-close-v2 and
bin-picking-v2) for the experiments of out-of-distribution. Then, we divided the dataset and created the following dataset
based on their intended purposes.

• ML45. We select 45 training tasks of ML45 in Metaworld, and randomly sample 1000 episodes pre task from the
Metaworld dataset. This data has 45K episodes and about ⇠3.40M interaction steps. The dataset is used in Phase I and
Phase II training.

• ML10. We select 10 training tasks of ML10 in Metaworld, and randomly sample 1000 episodes pre task from the
Metaworld dataset. This data has 10K episodes and about ⇠0.79M interaction steps. The dataset is used to train the
model in Phase II of the ablation study.

• Out-of-distribution tasks. We select 5 test tasks of ML45 in Metaworld (”hand-insert-v2”, ”door-unlock-v2”, ”door-
lock-v2”, ”box-close-v2”, and ”bin-picking-v2”), and randomly sample 10, 100, and 1000 episodes pre task from the
Metaworld dataset.

A.4. Training detail
Phase I. In Phase I, the entire model, except for the cross-attention layers (XAtten.), is trained using a self-supervised

training objective on the ML45 dataset.
Phase II. In Phase II, we freeze the model encoder and only finetune a small part of the model, namely the Control

Transformer, using imitation learning based on prompts. To encode the prompts, we use the CLIP encoder (CLIP/ViT-
B/16) [27] and denote the resulting prompt sequence as P . The output sequence from each cross-attention layer is computed
by softmax( qHkT

pp
d

)vP , where H is the sequence of episodes and d is the embedding dimension. In ablation study, we use
Habitat 10K and ML10 datasets for Phase II training dataset, while for the other experiments we use the Habitat 50K and
ML45 datasets as training data for Phase II.

Out-of-distribution tasks. In Sec. 5.3.2, we use DualMind, IL-only, and Scratch for out-of-distribution tasks.
DualMind and IL-only model are trained beforehand and further finetuned with few-shot demonstrations. Scratch
refers to the model that is trained on few-shot demonstrations from randomly initialized model weights. We randomly select
10, 100 and 1000 episodes for few-shot learning. We use batch size bs = 64 and lr = 1e-4. We train all models for 10000
gradient steps. The data for the out-of-distribution tasks are generated in the same way as we did in Sec. A.3.

Ablation study. In Sec. 5.4, we use Phase I model pretrained on Habitat 50k and ML45 datasets. And the training
parameters were the same as in Phase II except for the change in ablation condition and datasets.

A.5. Evaluation detail
Habitat. Habitat is an immersive navigation task that provides a visually realistic environment. Our experiments are

focused on the ImageNav task, in which the agent navigates towards a target position based on a goal image. The agent
should stop within 1000 steps and reach a distance of 1m from the target image. To conduct our evaluation, we chose 4
scenes (Convoy, Beach, Cooperstown and Eagerville). We hold out 5 Gibson scenes (hominy, Goffs, Hillsdale, Micanopy,
and Rosser) for the experiments of out-of-distribution tasks. For each scene, we randomly select three difficulty levels based
on path length (EASY: 1.5-3m, MEDIUM: 3-5m, and HARD: 5-10m), resulting in a total of 300 episodes per scene. The
metrics of the Habitat benchmark are listed below:

• Success Rate(SR) and Success weighted by Path Length(SPL). The success rate(SR) and success eighted by Path
Length(SPL), proposed by [2], are estimated over 100 episodes on 4 scenes with 3 difficulty levels per scene, for a total
of 1200 episodes per seed.

Metaworld. Metaworld is a benchmark of 50 diverse simulated manipulation tasks. We select 45 training tasks on
ML45 for the experiments of evaluation, and hold out 5 test tasks (”hand-insert-v2”, ”door-unlock-v2”, ”door-lock-v2”,
”box-close-v2”, and ”bin-picking-v2”) for the experiments of out-of-distribution. The metrics of the Metaworld benchmark
are listed below.

• Success Rate(SR). We refer to the evaluation method in Metaworld [40]. The success rate is estimated over 10 seeds
per task.



• Expert Score. The expert score is a measure of the difference between the performance of agents and experts, and is
calculated as the ratio of the return obtained by agents to the expert return. We use the same expert return calculation
method as GATO [32].
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where N it the total number of collected episodes for the task, W is the window size, and Ri is the total return for
episode i.

B. More experiments
B.1. Comparisons of varying context length

We conducted experiments on different context lengths, as illustrated in Fig. 12 and Fig. 13. On the navigation tasks
in Habitat, long-range temporal dependencies are important for decision-making. As a result, the model’s performance is
improved progressively as the length of the context increases, as shown in Fig. 12. On the other hand, we observed that
setting the context length to 6 leads to better performance on the Metaworld dataset, as demonstrated in Fig. 13. Therefore,
we choose a context length of 6 as means of balancing performance and compute cost. However, if one seeks to capture
long-term temporal dependence, increasing the context length may be necessary.
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Figure 12: Comparison of varying context length on Habitat,and compare agents by Success Rate (SR) (left) and Success
weighted by Path Length (SPL) (right).
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Figure 13: Comparisons of varying context length on MetaWorld 45 tasks on Percentage of Expert Score (PES) (left) and
Success Rate (SR) (right).

B.2. Comparison with vision tokenization

We conducted a set of experiments to demonstrate the effectiveness of the multi-state tokens module (i.e., TokenLearner),
by comparing it with a single-state tokens module that uses mean pooling and a linear projection layer to convert patch tokens
to one token. In contrast to other ablation studies, we trained both Phase I and Phase II on the ML45 and Habitat 50k datasets.



The results in Table 5 indicate a minor difference between the two on habitat, but an average success rate difference of ap-
proximately 0.09 on ML45. These findings support our expectation that multi-state tokens can extract additional information
from the encoder to improve decision-making and enhance overall learning performance.

tokenization Habitat Metaworld
multi-state token. 0.1239 0.802
single-state token. 0.1217 0.713

Table 5: Comparisons of tokenization methods on Habitat and MetaWorld 45 tasks, measured by Success Rate (SR).

B.3. Prompt conditioning discussion
Implementation details. In Sec. 5.4, we conducted an ablation study by comparing two prompt conditioning ap-

proaches: prefix and XAtten. prompting. The prefix approach is a conventional prompting method that splices the prompt
sequences in front of the token sequences, which are directly fed into the Transformer decoder layers. In contrast, XAt-
ten. prompting uses a cross-attention layer to fuse the prompt sequences and token sequences together. We utilized the base
model that was pretrained on Habitat 50 and ML45 after Phase I. We use Habitat 10K and ML10 datasets for Phase II training
dataset.

Discussion. In the experiments discussed in Sec.5.4, it was found that XAtten. prompting outperforms prefix prompting.
This suggests that the cross attention mechanism is effective in establishing a strong connection between prompt and token
sequences, which has also been demonstrated in other recent works, such as Vima[17] and Stable Diffusion [33]. One
potential limitation of prefix prompting is that the prompt token sequence may be too short to attract sufficient attention
from the attention mechanism, leading to suboptimal performance. To address this, future research may explore alternative
encoding methods for prompts that can better capture the information necessary for guiding the model’s output.

B.4. Attention visualization
In Figure 14, we provide additional attention maps that reveal how DualMind tends to focus on the object being manip-

ulated, as well as its surrounding context and relevant visual cues (such as “plate-slide-v2”, “push-v2”, and “hammer-v2”)
when performing manipulation tasks in MetaWorld. Furthermore, the attention maps show that the model focuses on the
location of the item being manipulated, and then interacts with the corresponding item to complete the task. In Habitat, our
model (DualMind) focuses more on exploring the scene and then locating the goal, as illustrated in Figure 14. The atten-
tion maps demonstrate that DualMind quickly identified the location of the goal image at the outset. Despite that there are
obstacles blocking the shortest path, DualMind was able to eventually reach the goal.

B.5. Performance on each tasks
We show the detailed results of all models on Metaworld and Habitat in Table 6, Table 7, and Table 8. Specifically,

Table 6 presents the Habitat results, while Table 7 and Table 8 present the Metaworld results.
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Figure 14: More attention map visualization. On Metaworld, the attention maps show that the model focuses on the location
of the item being manipulated, and then interacts with the corresponding item to complete the task. On Habitat, DualMind
focuses more on exploring the scene and then locating the goal.



DualMind DualMind/single
scene SR SPL SR SPL

Convoy(easy) 0.143± 0.021 0.124±0.017 0.160±0.026 0.115±0.027
Convoy(medium) 0.150±0.017 0.144±0.020 0.157±0.006 0.126±0.009

Convoy(hard) 0.067±0.025 0.062±0.029 0.173±0.042 0.162±0.039
Beach(easy) 0.170±0.044 0.144±0.045 0.170±0.053 0.133±0.036

Beach(medium) 0.157±0.015 0.146±0.012 0.200±0.050 0.165±0.050
Beach(hard) 0.133±0.015 0.128±0.014 0.227±0.045 0.215±0.047

Cooperstown(easy) 0.147±0.021 0.122±0.030 0.180±0.070 0.141±0.058
Cooperstown(medium) 0.110±0.035 0.103±0.027 0.190±0.046 0.175±0.044

Cooperstown(hard) 0.073±0.021 0.070±0.020 0.140±0.046 0.132±0.043
Eagerville(easy) 0.113±0.025 0.079±0.027 0.087±0.015 0.054±0.003

Eagerville(medium) 0.127±0.029 0.106±0.020 0.107±0.025 0.087±0.019
Eagerville(hard) 0.097±0.046 0.081±0.043 0.147±0.021 0.130±0.018

Jointly Jointly/single
scene SR SPL SR SPL

Convoy(easy) 0.130±0.020 0.122±0.023 0.173±0.031 0.120±0.020
Convoy(medium) 0.080±0.000 0.076±0.002 0.143±0.031 0.111±0.035

Convoy(hard) 0.050±0.010 0.049±0.011 0.177±0.015 0.160±0.017
Beach(easy) 0.137±0.021 0.115±0.013 0.220±0.056 0.156±0.026

Beach(medium) 0.093±0.021 0.086±0.019 0.230±0.030 0.172±0.015
Beach(hard) 0.057±0.021 0.054±0.021 0.147±0.042 0.115±0.018

Cooperstown(easy) 0.117±0.035 0.106±0.034 0.173±0.021 0.139±0.027
Cooperstown(medium) 0.077±0.006 0.069±0.007 0.240±0.026 0.219±0.027

Cooperstown(hard) 0.080±0.020 0.076±0.022 0.183±0.032 0.167±0.032
Eagerville(easy) 0.137±0.035 0.116±0.035 0.100±0.010 0.058±0.002

Eagerville(medium) 0.097±0.015 0.085±0.016 0.180±0.030 0.112±0.021
Eagerville(hard) 0.067±0.023 0.061±0.022 0.193±0.040 0.150±0.020

IL-only IL-only/single
scene SR SPL SR SPL

Convoy(easy) 0.113±0.006 0.110±0.006 0.110±0.010 0.09±0.011
Convoy(medium) 0.040±0.026 0.039±0.026 0.037±0.025 0.030±0.021

Convoy(hard) 0.027±0.006 0.027±0.006 0.053±0.012 0.043±0.011
Beach(easy) 0.103±0.055 0.095±0.051 0.070±0.010 0.052±0.010

Beach(medium) 0.053±0.035 0.050±0.033 0.050±0.010 0.035±0.0135
Beach(hard) 0.030±0.017 0.027±0.015 0.033±0.012 0.027±0.010

Cooperstown(easy) 0.080±0.010 0.074±0.010 0.103±0.015 0.076±0.01
Cooperstown(medium) 0.043±0.012 0.041±0.023 0.053±0.012 0.038±0.013

Cooperstown(hard) 0.047±0.020 0.045±0.009 0.050±0.000 0.039±0.006
Eagerville(easy) 0.067±0.025 0.064±0.025 0.063±0.021 0.042±0.023

Eagerville(medium) 0.070±0.030 0.054±0.018 0.033±0.021 0.022 ±0.01
Eagerville(hard) 0.047±0.021 0.040±0.024 0.033±0.021 0.026±0.014

SMART-only SMART-only/single
scene SR SPL SR SPL

Convoy(easy) 0.113±0.006 0.088±0.003 0.007±0.006 0.007±0.006
Convoy(medium) 0.003±0.006 0.003±0.005 0.0±0.0 0.0±0.0

Convoy(hard) 0.007±0.006 0.005±0.004 0.0±0.0 0.0±0.0
Beach(easy) 0.063±0.025 0.044±0.014 0.007±0.012 0.007±0.012

Beach(medium) 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Beach(hard) 0.010±0.010 0.008±0.009 0.0±0.0 0.0±0.0

Cooperstown(easy) 0.090±0.020 0.079±0.018 0.013±0.006 0.013±0.006
Cooperstown(medium) 0.010±0.010 0.007±0.006 0.0±0.0 0.0±0.0

Cooperstown(hard) 0.003±0.006 0.003±0.006 0.0±0.0 0.0±0.0
Eagerville(easy) 0.087±0.006 0.076±0.003 0.017±0.006 0.016±0.005

Eagerville(medium) 0.023±0.006 0.017±0.004 0.0±0.0 0.0±0.0
Eagerville(hard) 0.010±0.010 0.008±0.008 0.0±0.0 0.0±0.0

Table 6: performance on each tasks on Habitat



DualMind DualMind/single Jointly Jointly/single
task SR return SR return SR return SR return

assembly-v2 0.9 1039.1 1.0 1276.0 0.0 198.8 0.0 477.0
basketball-v2 0.3 400.0 0.5 621.7 0.0 10.6 0.0 42.4

button-press-topdown-v2 1.0 364.9 1.0 1175.4 0.6 113.9 0.6 45.2
button-press-topdown-wall-v2) 1.0 0.0 1.0 0.0 0.7 55.2 1.0 39.5

button-press-v2 1.0 347.3 1.0 357.6 0.7 318.2 0.5 326.2
button-press-wall-v2 0.3 1373.7 1.0 1195.2 0.0 128.8 0.0 0.5

coffee-button-v2 1.0 301.0 1.0 299.2 1.0 304.3 0.6 268.6
coffee-pull-v2 1.0 429.5 1.0 407.3 0.8 303.8 0.9 324.2
coffee-push-v2 1.0 443.6 1.0 509.0 0.0 30.3 0.2 66.9

dial-turn-v2 1.0 1220.0 1.0 1203.3 0.0 61.6 0.3 17.7
disassemble-v2 1.0 615.3 1.0 553.4 0.0 220.9 0.0 213.2
door-close-v2 1.0 946.0 1.0 754.9 0.1 2956.1 1.0 1286.4
door-open-v2 1.0 1756.7 1.0 1775.4 0.1 696.5 0.9 1457.9

drawer-close-v2 1.0 61.4 1.0 81.2 0.1 4.9 0.4 24.6
drawer-open-v2 1.0 1965.0 1.0 1989.5 0.7 1517.8 0.5 1103.6
faucet-open-v2 0.3 1693.4 1.0 2192.2 0.0 1388.9 0.0 1276.4
faucet-close-v2 0.1 1624.0 0.0 1695.1 0.0 1856.1 0.2 2075.1

hammer-v2 1.0 951.9 1.0 929.5 0.0 675.8 0.1 869.2
handle-press-side-v2 1.0 839.9 1.0 808.8 0.7 307.2 1.0 877.9

handle-press-v2 1.0 671.1 1.0 782.7 0.4 195.6 0.7 427.7
handle-pull-side-v2 0.8 580.4 0.0 29.1 0.0 12.4 0.0 11.4

handle-pull-v2 0.7 182.9 0.2 177.5 0.1 70.4 0.5 139.9
lever-pull-v2 0.0 291.1 0.8 946.7 0.1 420.3 0.0 283.8

peg-insert-side-v2 0.9 990.8 0.7 909.5 0.5 1413.7 0.3 1096.3
pick-place-wall-v2 1.0 656.9 1.0 1698.2 0.0 0.1 0.0 14.0
pick-out-of-hole-v2 0.0 261.1 0.0 362.4 0.0 25.9 0.0 12.3

reach-v2 0.1 2507.2 0.0 2374.8 0.0 241.8 0.0 598.6
push-back-v2 1.0 193.7 1.0 283.7 0.0 6.5 0.0 6.4

push-v2 1.0 1264.1 1.0 1446.0 0.0 22.7 0.0 23.4
pick-place-v2 0.7 608.4 1.0 303.0 0.0 7.2 0.0 19.2
plate-slide-v2 1.0 1255.4 1.0 1214.2 0.0 269.7 0.2 417.6

plate-slide-side-v2 1.0 1281.6 1.0 1278.6 0.0 143.1 0.2 397.8
plate-slide-back-v2 1.0 1207.5 1.0 1170.6 0.8 909.0 0.4 618.6

plate-slide-back-side-v2 1.0 1340.7 1.0 1321.9 0.1 499.6 0.6 782.1
peg-unplug-side-v2 0.8 343.9 1.0 344.0 0.1 109.2 0.3 122.0

soccer-v2 0.0 336.4 0.0 329.6 0.1 180.3 0.0 164.3
stick-push-v2 1.0 1328.5 1.0 1316.9 0.0 24.2 0.5 475.5
stick-pull-v2 0.9 190.4 1.0 648.5 0.0 6.3 0.1 144.8
push-wall-v2 1.0 1387.4 1.0 1782.3 0.0 51.3 0.0 49.4
reach-wall-v2 0.5 3151.8 0.0 4190.0 0.0 341.4 0.0 714.7
shelf-place-v2 0.8 752.2 0.9 864.4 0.0 0.0 0.0 0.1
sweep-into-v2 1.0 880.6 0.8 783.1 0.0 47.5 0.0 52.0

sweep-v2 1.0 1346.6 1.0 1108.6 0.0 93.3 0.0 91.8
window-open-v2 1.0 438.6 1.0 494.6 0.5 379.8 0.2 436.8
window-close-v2 1.0 784.2 1.0 806.3 0.5 799.5 0.4 541.1

Table 7: The detailed Metaworld ML45 results of the DualMind, DualMind/single, Jointly and Jointly/single on each tasks.



IL-only IL-only/single SMART-only SMART-only/single
SR return SR return SR return SR return

assembly-v2 0.0 252.1 0.0 169.1 0.0 197.2 0.0 189.0
basketball-v2 0.0 13.9 0.0 5.1 0.0 2.0 0.0 1.3

button-press-topdown-v2 0.0 194.3 0.0 33.3 0.0 116.4 0.0 0.1
button-press-topdown-wall-v2 0.6 88.6 0.0 1.3 0.0 35.7 0.0 14.5

button-press-v2 0.3 366.0 0.0 43.4 0.0 53.3 0.0 45.3
button-press-wall-v2 0.0 75.9 0.0 19.2 0.0 59.1 0.0 25.2

coffee-button-v2 1.0 301.0 0.0 38.6 0.6 297.3 0.0 65.1
coffee-pull-v2 0.9 365.8 0.0 13.5 0.0 11.6 0.0 11.9
coffee-push-v2 0.0 83.6 0.0 13.1 0.0 10.9 0.0 5.1

dial-turn-v2 0.0 19.3 0.0 6.7 0.0 4.4 0.0 8.3
disassemble-v2 0.0 210.9 0.0 206.6 0.0 204.8 0.0 206.1
door-close-v2 0.2 2742.7 0.0 30.4 0.0 659.8 0.2 327.4
door-open-v2 0.4 1169.6 0.0 169.6 0.0 212.3 0.0 383.7

drawer-close-v2 0.0 0.0 1.0 71.3 0.0 2.3 0.0 0.0
drawer-open-v2 1.0 1976.5 0.0 389.6 0.0 493.4 0.0 389.9
faucet-open-v2 0.1 1547.4 0.0 427.1 0.0 490.4 0.0 302.0
faucet-close-v2 0.0 1062.5 0.0 453.2 0.0 863.6 0.0 552.3

hammer-v2 0.0 588.5 0.0 528.0 0.0 263.3 0.0 585.6
handle-press-side-v2 0.6 235.4 0.8 493.9 0.0 26.3 0.0 28.7

handle-press-v2 0.0 86.1 0.0 18.5 0.0 34.3 0.0 22.9
handle-pull-side-v2 0.3 12.1 0.0 10.7 0.0 2.1 0.0 2.5

handle-pull-v2 0.2 82.5 0.0 6.4 0.0 14.4 0.0 4.4
lever-pull-v2 0.0 350.2 0.0 24.2 0.0 125.0 0.0 90.0

peg-insert-side-v2 0.9 1289.4 0.0 2.2 0.0 2.4 0.0 1.7
pick-place-wall-v2 0.0 27.4 0.0 0.0 0.0 0.0 0.0 0.0
pick-out-of-hole-v2 0.0 19.1 0.0 3.4 0.0 3.1 0.0 1.2

reach-v2 0.0 195.0 0.0 122.3 0.0 144.5 0.0 195.3
push-back-v2 0.0 5.0 0.0 1.7 0.0 2.3 0.0 1.7

push-v2 0.0 21.8 0.0 10.2 0.0 3.8 0.0 4.6
pick-place-v2 0.0 6.7 0.0 3.0 0.0 2.3 0.0 3.2
plate-slide-v2 0.3 393.9 0.0 72.1 0.0 97.2 0.0 44.2

plate-slide-side-v2 0.0 45.8 0.2 419.0 0.0 20.6 0.0 5.0
plate-slide-back-v2 0.7 1027.7 0.0 43.3 0.0 48.3 0.0 21.8

plate-slide-back-side-v2 0.0 200.1 0.0 1185.7 0.0 25.5 0.0 25.6
peg-unplug-side-v2 0.2 131.4 0.0 3.6 0.0 2.7 0.0 2.8

soccer-v2 0.0 21.0 0.0 38.1 0.0 3.4 0.0 6.9
stick-push-v2 0.0 16.7 0.0 5.7 0.0 1.9 0.0 3.1
stick-pull-v2 0.0 6.6 0.0 5.8 0.0 2.2 0.0 6.9
push-wall-v2 0.0 24.4 0.0 18.0 0.0 3.9 0.0 5.0
reach-wall-v2 0.0 558.7 0.0 305.2 0.0 159.9 0.0 435.3
shelf-place-v2 0.0 214.2 0.0 0.0 0.0 0.0 0.0 0.0
sweep-into-v2 0.0 55.3 0.0 8.3 0.0 10.7 0.0 9.1

sweep-v2 0.0 83.6 0.0 15.9 0.0 17.1 0.0 13.7
window-open-v2 1.0 449.5 0.0 101.4 0.0 91.4 0.0 92.7
window-close-v2 0.1 462.9 0.0 10.9 0.0 374.4 0.0 216.0

Table 8: The detailed Metaworld ML45 results of the IL-only, IL-only/single, SMART-only and SMART-only/single on each
tasks.


