
Online Prototype Learning for Online Continual Learning
—Supplementary Material—

Yujie Wei1 Jiaxin Ye1 Zhizhong Huang2 Junping Zhang2 Hongming Shan1,3,4*

1 Institute of Science and Technology for Brain-inspired Intelligence, Fudan University
2 Shanghai Key Lab of Intelligent Information Processing, School of Computer Science

Fudan University
3 MOE Frontiers Center for Brain Science, Fudan University

4 Shanghai Center for Brain Science and Brain-inspired Technology
{yjwei22, jxye22}@m.fudan.edu.cn, {zzhuang19, jpzhang, hmshan}@fudan.edu.cn

A. Difference from PCL

PCL [8] bridges instance-level contrastive learning with
clustering based on unsupervised representation learning.
We discuss the differences between PCL and OPE in the
following three parts.
(1) Difference in learning settings. PCL is an unsu-
pervised contrastive learning method while OPE explicitly
leverages class labels to compute online prototypes. Thus,
OPE belongs to the supervised setting.
(2) Difference in prototype calculation. At each time step
(iteration), PCL uses all samples of classes to obtain proto-
types by performing K-means clustering. In contrast, OPE
just utilizes a mini-batch of training data to calculate online
prototypes.
(3) Difference in contrastive form (most significant dif-
ferences). The anchor of OPE as well as its positive and
negative samples are online prototypes, which means no in-
stance is involved, while PCL takes instance-level represen-
tation as the anchor and cluster centers as the positive and
negative samples. Specifically, OPE regards an online pro-
totype and its augmented view as a positive pair; online pro-
totypes of different classes are regarded as negative pairs.
PCL clusters samples M times, then regards a representa-
tion z of one image (instance) and its cluster center c as a
positive pair; z and other cluster centers as negative pairs,
formally defined as:

LPCL= −
2N∑
i=1

 1

M

M∑
m=1

log
exp(

zT
i cm

i

τm )∑r
j=0 exp(

zT
i cm

j

τm )

 , (S1)

where N is the batch size, r is the number of negative sam-
ples, and τm is the temperature hyper-parameter.

*Corresponding author

Method M = 0.1k M = 0.2k M = 0.5k

ER 19.4±0.6 20.9±0.9 26.0±1.2
ER with KD 17.0±2.7 17.3±2.1 17.6±0.8

Table S1. Average Accuracy with knowledge distillation [10] (KD)
for ER on CIFAR-10. All results are the average of 5 runs.

ER SCR DVC OCM OnPro
IN-100 9.6±3.5 12.9±2.2 11.7±2.9 16.4±3.6 18.6±2.3
IN-1k 5.6±4.5 4.7±0.2 0.1±0.1 5.5±0.1 6.0±0.2

Table S2. Average Accuracy on ImageNet-100 (M = 1k) and
ImageNet-1k (M = 5k). All results are the average of 3 runs.

In addition, at each iteration, PCL needs to cluster all
samples M times, which is very expensive for training,
while OPE only needs to compute online prototypes once.

B. Extra Experimental Results
B.1. More Visual Explanations

To further demonstrate the shortcut learning in online
CL, we randomly select several images from all (ten)
classes in the training set of CIFAR-10 and provide their vi-
sual explanations by GradCAM++ [2], as shown in Fig. S1.
The results confirm that shortcut learning is widespread in
online CL. Although ER [3] and DVC [5] predict the correct
class, they still focus on some oversimplified and object-
unrelated features. In contrast, our OnPro learns represen-
tative features of classes.

B.2. Knowledge Distillation on ER

As analyzed in the main paper, it is hard to distill useful
knowledge due to shortcut learning. To demonstrate this,
we apply the knowledge distillation (KD) in [10] to ER, and
the results are shown in Table S1. The performance of ER



Input ER OnProDVC Input ER OnProDVC

1.00.80.60.40.20
Figure S1. More visual explanations by GradCAM++ on the training set of CIFAR-10 (image size 32 × 32).



(b) OnPro(a) OCM

Figure S2. t-SNE visualization of all classes in the test set of CIFAR-10 (M = 0.2k).

Method
CIFAR-10 CIFAR-100

Accuracy ↑ Forgetting ↓ Accuracy ↑ Forgetting ↓

LCE(both) 48.5±2.2 46.6±2.4 20.4±0.6 41.0±0.6
LCE(sepa) 53.2±2.1 38.9±2.3 18.8±0.6 48.1±0.8

OnPro (ours) 57.8±1.1 23.2±1.3 22.7±0.7 15.0±0.8

Table S3. Ablation studies about LCE on CIFAR-10 (M = 0.1k) and CIFAR-100 (M = 0.5k). LCE(both) means calculating X and Xb

in one CE loss, while LCE(sepa) is calculating X and Xb separately in two CE losses. All results are the average of 15 runs.

decreases after using KD, and a larger memory bank does
not result in significant performance gains.

B.3. Experiments on Larger Datasets

We conduct extra experiments on ImageNet-100 and
ImageNet-1k. ImageNet-100 is a subset of ImageNet-1k
with randomly sampled 100 classes; we follow [7] to use
the fixed random seed (1993) for dataset generation. We
set the number of tasks to 50, the batch size and the buffer
batch size to 10, and the memory bank size to 1k for
ImageNet-100 and 5k for ImageNet-1k. For a fair compar-
ison, all methods use the same data augmentations, includ-
ing resized-crop, horizontal-flip, and gray-scale. The mean
Average Accuracy over 3 runs are reported in Table S2, sug-
gesting: (i) on larger datasets, our OnPro still achieves the
best performance and is more stable (lower STD); and (ii)
the performance on larger datasets varies greatly. For ex-
ample, on ImageNet-1k, DVC fails, ER is unstable (large
STD), and SCR performs even worse than ER.

B.4. Visualization of All Classes

To demonstrate the impact of our OnPro on classifica-
tion, we provide the visualization of OnPro and OCM for all
classes in the test set on CIFAR-10 (M = 0.2k), as shown
in Fig. S2. It is intuitive that the closer the prototypes of
the two classes are, the more confused these two classes
become. Obviously, OCM does not avoid class confu-
sion, especially for the three animal classes of Bird, Cat,
and Dog, while OnPro achieves clear inter-class dispersion.

Furthermore, compared to OCM, OnPro can perceive se-
mantically similar classes and present their relationships in
the embedding space. Specifically, for the two classes of
Automobile and Truck, their distributions are adjacent
in OnPro because they have more similar semantics com-
pared to other classes. However, OCM cannot capture the
semantics relationships, causing the two classes to be rela-
tively far apart. The results suggest that OnPro can achieve
an equilibrium status that separates all seen classes well by
learning representative and discriminative features with on-
line prototypes.

C. Extra Ablation Studies
C.1. Class Balance on Cross-Entropy Loss

In Table S3, we find that the way to calculate the cross-
entropy (CE) loss can significantly affect the performance
of OnPro, where LCE(both) = l(y∪yb, φ(f(x∪xb))) and
LCE(sepa) = l(y, φ(f(x))) + l(yb, φ(f(xb))). Here we
omit aug for simplicity. Both LCE(both) and LCE(sepa)
degrade the performance because adding the data of new
classes will bring serious class imbalance, causing the clas-
sifier to easily overfit to new classes and forget previous
knowledge.

C.2. Effects of the APF Ratio α

Encouraging the model to have a tendency to focus on
confused classes is helpful for mitigating catastrophic for-
getting. However, excessive focus on these classes may dis-



α 0 0.10 0.25 0.50 0.75 0.9
CIFAR-10 62.9±2.5 63.2±2.0 65.5±1.0 65.4±2.7 64.6±1.8 64.1±2.0
CIFAR-100 22.0±1.5 22.7±0.7 22.1±1.1 21.7±1.2 21.3±1.3 21.1±1.1

Table S4. Effects of the APF ratio α on CIFAR-10 (M = 0.2k) and CIFAR-100 (M = 0.5k). All results are the average of 5 runs.

Method M = 0.1k M = 0.2k M = 0.5k

ER-Rot 30.1±1.9 34.1±3.0 42.8±4.1
ASER-Rot 30.7±3.5 35.8±0.8 43.8±2.1
SCR-Rot 35.8±3.3 46.4±2.4 59.8±2.6
DVC-Rot 45.3±4.3 58.5±2.8 66.7±2.1

OCM 47.5±1.7 59.6±0.4 70.1±1.5
OnPro (ours) 57.8±1.1 65.5±1.0 72.6±0.8

Table S5. Average Accuracy using Rotation augmentation (Rot)
on CIFAR-10. All results are the average of 5 runs.

rupt the established equilibrium. Therefore, we study the
trade-off factor α on CIFAR-10 (M = 0.2k) and CIFAR-
100 (M = 0.5k), and the results are shown in Table S4. On
the one hand, when α is too small, the APF reduces to the
random selection and takes little account of easily misclas-
sified classes. On the other hand, too large α causes fo-
cusing too much on confused classes and ignoring general
cases. Based on the experimental results, we set α = 0.25
on CIFAR-10 and α = 0.1 on CIFAR-100 and TinyIma-
geNet.

C.3. Effects of Rotation Augmentation

As mentioned in the main paper, besides resized-crop,
horizontal-flip, and gray-scale, OCM and OnPro use Rota-
tion augmentation (Rot) like [10]. To explore the effects of
Rot, we employ it for some SOTA baselines, as shown in
Table S5. We find that using Rot can improve the perfor-
mance of baselines except for SCR. However, they are still
inferior to OnPro.

C.4. Effects of Projection Head g

We employ a projection head g to get representations,
which is widely-used in contrastive learning [4]. For base-
lines, SCR [9], DVC [5], and OCM [6] also use a projec-
tion head to get representations. To explore the effects of
the projector g in OnPro, we conduct the experiment in Ta-
ble S6. The result shows that projector g can only bring
a slight performance improvement, and also illustrates that
the performance of OnPro comes mainly from our proposed
components.

C.5. Effects of Memory Bank Batch Size m

Fig. S3 shows the effects of memory bank batch size.
We can observe that the performance of OnPro improves as
the memory bank batch size increases. However, the train-
ing time also grows with larger memory bank batch sizes.

Method M = 0.1k M = 0.2k M = 0.5k

no Projector 56.1±4.7 63.3±1.9 71.0±1.5
OnPro (ours) 57.8±1.1 65.5±1.0 72.6±0.8

Table S6. Average Accuracy without projector g on CIFAR-10.
All results are the average of 5 runs.

10 16 32 64 128
Memory Bank Batch Size

62.0

62.5

63.0

63.5

64.0

64.5

65.0

65.5

A
ve

ra
ge

 A
cc

ur
ac

y(
%

)

61.7

63.0

64.8

65.5 65.6

Figure S3. The performance of OnPro on CIFAR-10 (M = 0.2k)
with different memory bank batch sizes.

Following [6], we set the memory bank batch size to 64.

D. Training Algorithms of OnPro and APF
The training procedures of the proposed OnPro and APF

are presented in Algorithms 1 and 2, respectively. The
source code will be made publicly available upon the ac-
ceptance of this work.

E. Implementation Details about Baselines
The hyperparameters of OnPro are given in the main pa-

per. Here we discuss in detail how each baseline is imple-
mented.

For all baselines, we follow their original paper and de-
fault settings to set the hyperparameters. We set the random
seed to 0 and run the experiment 15 times in the same pro-
gram to get the results.

For iCaRL, AGEM, and ER, we use the SGD optimizer
and set the learning rate to 0.1. We uniformly randomly
select samples to update the memory bank and replay.

For DER++, we use the SGD optimizer and set the learn-
ing rate to 0.03. We fix α to 0.1 and β to 0.5.



Algorithm 1: Training Algorithm of OnPro
Input: Data stream D, encoder f , projector g, classifier φ, and data augmentation aug.
Initialization: Memory bankM← {},
for t=1 to T do

for each mini-batch X in Dt do
Xb ← APF (M)
X̂, X̂b ← aug(X,Xb)

z, zb = g(f (X ∪ X̂)), g(f (Xb ∪ X̂b))
Compute online prototypes P and Pb ▷ Eq. (2) in the main paper
LOnPro ←LOPE(P , Pb) + LINS(z, zb) + LCE(φ(f(X̂b)))
θf , θg ← LOnPro

M← Update(M, X)
end

end

Algorithm 2: Algorithm of APF

Input:M, and online prototypes
{
pb
i

}Kb

i=1
of previous time step.

Output: Xb

Initialization: S ← {}, nAPF = α ·m,
P ←Compute probability Pi,j for each class pair using pb

i and pb
j ▷ Eq. (6) in the main paper

for each Pi,j in P do
Xi, Xj ← sample ⌊Pi,j · nAPF + 0.5⌋ images from class i and class j
S ← S ∪Mixup(Xi, Xj)

end
Xbase ← the remaining m− nAPF samples are uniformly randomly selected fromM
Xb← S ∪Mixup(Xbase, Xbase)

For PASS, we use the Adam optimizer and set the learn-
ing rate to 0.001. The weight decay is set to 2e-4. We set
the loss weights λ and γ to 10 and fix the temperature as
0.1.

For GSS, we use the SGD optimizer and set the learning
rate to 0.1. The number of batches randomly sampled from
the memory bank to estimate the maximal gradients cosine
similarity score is set to 64, and the random sampling batch
size for calculating the score is also set to 64.

For MIR, we use the SGD optimizer and set the learning
rate to 0.1. The number of subsamples is set as 100.

For GDumb, we use the SGD optimizer and set the learn-
ing rate to 0.1. The value for gradient clipping is set to 10.
The minimal learning rate is set to 0.0005, and the epochs
to train for the memory bank are 70.

For ASER, we use the SGD optimizer and set the learn-
ing rate to 0.1. The number of nearest neighbors to perform
ASER is set to 3. We use mean values of Adversarial SV
and Cooperative SV, and set the maximum number of sam-
ples per class for random sampling to 1.5. We use the SV-
based methods for memory update and retrieval as given in
the original paper.

For SCR, we use the SGD optimizer and set the learning

rate to 0.1. We set the temperature to 0.07 and employ a
linear layer with a hidden size of 128 as the projection head.

For CoPE, we use the SGD optimizer and set the learning
rate to 0.001. We set the temperature to 1. The momentum
of the moving average updates for the prototypes is set to
0.99. We use dynamic buffer allocation instead of a fixed
class-based memory as given in the original paper.

For DVC, we use the SGD optimizer and set the learning
rate to 0.1. The number of candidate samples for retrieval
is set to 50. For CIFAR-100 and TinyImageNet, we set loss
weights λ1 = λ2 = 1, λ3 = 4. For CIFAR-10, λ1 = λ2 =
1, λ3 = 2.

For OCM, we use the Adam optimizer and set the learn-
ing rate to 0.001. The weight decay is set as 0.0001. We
set the temperature to 0.07 and employ a linear layer with
a hidden size of 128 as the projection head. λ is set to 0.5.
We set α to 1 and β to 2 for contrastive loss and set α to
0 and β to 2 for supervised contrastive loss as given in the
original paper of OCM.

We refer to the links in Table S7 to reproduce the results.



Baseline Link
iCaRL https://github.com/srebuffi/iCaRL
DER++ https://github.com/aimagelab/mammoth
PASS https://github.com/Impression2805/CVPR21_PASS
AGEM https://github.com/facebookresearch/agem
GSS https://github.com/rahafaljundi/Gradient-based-Sample-Selection
MIR https://github.com/optimass/Maximally_Interfered_Retrieval
GDumb https://github.com/drimpossible/GDumb
ASER and SCR https://github.com/RaptorMai/online-continual-learning
CoPE https://github.com/Mattdl/ContinualPrototypeEvolution
ER and DVC https://github.com/YananGu/DVC
OCM https://github.com/gydpku/OCM

Table S7. Baselines with source code links.aRERASGEGSSERMIRDumSESCRCoPDVCOCMo(no nPro
4 # 4 8 # 5 7 6 # 24 10 #

0
5

10
15
20
25
30

M
in

Figure S4. Training time of each method on CIFAR-10.

F. Execution Time
Fig. S4 shows the training time of all methods on

CIFAR-10. OnPro is faster than OCM [6] and GSS [1]. We
find that rotation augmentation (Rot) is the main reason for
the increase in training time. When rotation augmentation is
not used, the training time of OnPro is significantly reduced
and is close to most of the baselines. Furthermore, OnPro
achieves the best performance compared to all baselines.

References
[1] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Ben-

gio. Gradient based sample selection for online continual
learning. Advances in Neural Information Processing Sys-
tems, 32, 2019. 6

[2] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader,
and Vineeth N Balasubramanian. Grad-CAM++: Gener-
alized gradient-based visual explanations for deep convolu-
tional networks. In 2018 IEEE Winter Conference on Appli-
cations of Computer Vision (WACV), pages 839–847, 2018.
1

[3] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny,
Thalaiyasingam Ajanthan, Puneet K Dokania, Philip HS
Torr, and Marc’Aurelio Ranzato. On tiny episodic memo-
ries in continual learning. arXiv:1902.10486, 2019. 1

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learn-
ing of visual representations. In International Conference on
Machine Learning, pages 1597–1607, 2020. 4

[5] Yanan Gu, Xu Yang, Kun Wei, and Cheng Deng. Not just
selection, but exploration: Online class-incremental contin-
ual learning via dual view consistency. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7442–7451, 2022. 1, 4

[6] Yiduo Guo, Bing Liu, and Dongyan Zhao. Online continual
learning through mutual information maximization. In In-
ternational Conference on Machine Learning, pages 8109–
8126, 2022. 4, 6

[7] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and
Dahua Lin. Learning a unified classifier incrementally via
rebalancing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 831–839,
2019. 3

[8] Junnan Li, Pan Zhou, Caiming Xiong, and Steven C. H. Hoi.
Prototypical contrastive learning of unsupervised representa-
tions. In International Conference on Learning Representa-
tions, 2021. 1

[9] Zheda Mai, Ruiwen Li, Hyunwoo Kim, and Scott Sanner.
Supervised contrastive replay: Revisiting the nearest class
mean classifier in online class-incremental continual learn-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops,
pages 3589–3599, 2021. 4

[10] Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-
Lin Liu. Prototype augmentation and self-supervision for
incremental learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
5871–5880, 2021. 1, 4


