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1. Discuss Physical Attacks and Physically Re-
alizable Attacks

Abelfattah et al. [1] and Tu et al. [5] both propose a
cross-modal and physically realizable attack, which could
work both on images and point clouds. Among their work,
an adversarial 3D object is placed on the top of a car in a 3D
scene and then rendered to both point clouds and the cor-
responding RGB images by differentiable renderers. The
shape and texture of the object are trainable parameters that
are manipulated adversarially.

However, the above works only stress “physically real-
izable”, which are not truly implemented in the real world.
Instead, their proposed methods are tested in a simulated 3D
environment. They want to prove their methods’ physical
realizability by adversarial 3D objects’ consistency across
modalities. But we can easily find that such adversarial
3D objects are complex to produce and it is unrealistic to
keep placing a huge 3D object over the vehicle. Therefore,
“physically realizable” usually represents a theoretical fea-
sibility in the real world, not an actual application.

Different from such physically realizable attacks, we
want to emphasize that our work is the first cross-modal
physical attack that actually operates on the target in the
physical world and achieves a success rather than just en-
suring “physically realizable”. In addition, we focus on
visible-infrared cross-modal attacks, while Abelfattah et al.
[1] and Tu et al. [5] focus on visible-LiDAR cross-modal at-
tacks. This is another key difference between us and them.

2. Centripetal Catmull-Rom Spline Function
In the part of shape representation, to naturally connect

anchor points, we choose a method of centripetal catmull-
rom spline Interpolation CCRS(·). Here, we will give a
specific description of it.

To generate a curve segment Ci between Pi and Pi+1,

*Corresponding author

we use four points Pi−1, Pi, Pi+1, Pi+2 and knot sequences
ti−1, ti, ti+1, ti+2. Firstly, we define Pi and ti:

Pi = [xi, yi]
T (1)

ti = [
√
(xi − xi−1)2 + (yi − yi−1)2]

α+ ti−1(i ≥ 1) (2)

where [xi, yi] are the coordinates of Pi, α ranges from 0 to
1 for knot parameterization, and t0 = 0. For the value of
α = 0.5, Ci will be a centripetal Catmull-Rom spline.

The curve segment Ci can then be obtained using the
spline equations A1, A2, A3, B1, B2, which are generated
recursively by Pi−1, Pi, Pi+1, Pi+2 and ti−1, ti, ti+1, ti+2:

Ci = {Ci(t)|ti ≤ t ≤ ti+1} (3)

Ci(t) =
ti+1 − t

ti+1 − ti
B1 +

t− ti
ti+1 − ti

B2 (4)

B1 =
ti+1 − t

ti+1 − ti−1
A1 +

t− ti−1

ti+1 − ti−1
A2 (5)

B2 =
ti+2 − t

ti+2 − ti
A2 +

t− ti
ti+2 − ti

A3 (6)

A1 =
ti − t

ti − ti−1
Pi−1 +

t− ti−1

ti − ti−1
Pi (7)

A2 =
ti+1 − t

ti+1 − ti
Pi +

t− ti
ti+1 − ti

Pi+1 (8)

A3 =
ti+2 − t

ti+2 − ti+1
Pi+1 +

t− ti+1

ti+2 − ti+1
Pi+2 (9)

when t = ti, Ci(t) = Pi and t = ti+1, Ci(t) = Pi+1.
Combining the above formulas, we can summarize the

process of generating the curve segment Ci into Ci =
CCRS(Pi1 , Pi, Pi+1, Pi+2).



3. Details about the Differential Evolution Al-
gorithm in Our Work.

3.1. Process and Formula

As mentioned in the main manuscript, the Differential
Evolution consists of four main parts: starting from an ini-
tial population which is a group of randomly generated so-
lutions in the search space, using the crossover and mutation
to generate the offspring in the boundary, making the fittest
survive according to the fitness function, and finally finding
the appropriate solution in the iterative evolution process.

In our case, a population represents a set of patch shapes.
Given the population size P , the k-th generation solutions
S(k) is represented as

S(k) := {Si(k)|θLj ≤ Sij(k) ≤ θUj , 1 ≤ i ≤ P, 1 ≤ j ≤ n}
(10)

where Si(k) is the i-th patch’s shape, and Sij(k) represents
the j-th anchor point of Si(k) in the k-th generation. θLj and
θUj together make up the feasible region Bj , which is the
moving range of the j-th anchor point in each patch shape.

Then we use crossover and mutation between random
individuals and inbreeding of superior individuals to gener-
ate candidate populations Cr(k). What’s more, since the
essence of an evolutionary algorithm is a process of ex-
ploration and utilization, we hope that it can explore more
freely in the early stage, and can evolve around the current
optimal solution when it evolves to a certain extent. There-
fore, we divide the Cr(k)’s generation into two stages and
the process can be formed as follows:

Cri(x) = clip(Sγ(k) + β(Sγ1(k)− Sγ2(k))) (11)

where Cri(k) is the i-th individual in the k-th candi-
date population. γ1, γ2 are random numbers picked from
{1, · · · , n}. and γ1 ̸= γ2. β is the differential weight and
clip(·) is a clipping operation to keep individuals within the
range. γ is the index number of the individual in S(k) but
will change in two stages. We can formulate γ as follows:

γ =

{
γ3, J (S(k)) < ϵ

γ∗, J (S(k)) ≥ ϵ
(12)

where γ3 is a random number picked from {1, · · · , n}, γ∗

denotes the index number of the best individual in S(k) and
γ∗ ̸= γ1 ̸= γ2 ̸= γ3. ϵ is a threshold.

In the next step, we choose better individuals from
S(k) and Cr(k) based on the score-aware iterative function
J (·)to develop the next generation S(K + 1).

Finally, the whole algorithm will stop when the attack
using the optimal individual in the current population as the
coordinates of anchor points is successful or when the max-
imum number of iterations T is reached.

3.2. Hyperparameters

Considering both the attack performance and the time
cost, we set the number of the initial population as 30, the
epochs of evolution as 200, and the differential weight β as
0.6. All hyperparameters are verified on the validation set.

4. Additional Experiments

4.1. Performances versus Different Detectors

We discuss the attack performances of one-stage detec-
tor: YOLOv3 and two-stage detector: Faster RCNN in Sec-
tion 4.1.1 of the main manuscript. Here, we will show the
effect of our unified adversarial patches on some other clas-
sical detection models like YOLOv5, YOLOv7[6], SSD[3],
and EfficientDet [4] in Table 1. It has to be noted that the
effect of our method on the SSD detector gets decreased
for its competitive robustness, but from the analysis of the
specific results, we also find that if given more epochs, our
method can achieve better results.

Table 1. Attack performances in different detection models.
YOLOv5 YOLOv7 SSD EfficientDet

ASR 71.67% 80.00% 37.50% 67.50%
AP drop (Visible) 82.11% 89.66% 26.02% 76.48%
AP drop (Infrared) 87.18% 93.84% 26.02% 84.77%

4.2. Effects of Various Shapes

As mentioned in Sec 4.1.2 of the main manuscript, we
provide the ablation study to investigate the outcomes of our
optimized shapes. In the main manuscript, we only show
the average effect of all these basic shapes, but to further
demonstrate the effect of each basic shape, we provide re-
sults of all basic shapes in Table 2.

4.3. Effects of Patch Sizes

In our method, the radius r of the initial circle affects
the size of the patch to some extent. To explore the impact
of patch sizes on the attack performance, we set 10, 15 and
20 for r. The corresponding quantitative results are listed
in Table 3, where we can see that though the ASR goes up
as the patch size increases, our method can still achieve a
competitive result with a small patch area, like an ASR of
66.67% with the radius r = 10. Additionally, we measure
the percentage of patches in the pedestrian area i.e. “Occlu-
sion Rate”. The higher the occlusion rate, the easier it is to
cover non-effective areas, such as the human head region, as
seen in Figure 1 (c). Therefore, to get a trade-off between
the attack performance and feasibility, we finally choose a
radius of r = 15. Some examples of different patch sizes
are shown in Figure 1.



Table 2. The ASR(%) and AP drop(%) of all basic shapes.
Circle Square Rectangle(1:2) Rectangle(2:1) Triangle

ASR 15.00% 2.50% 0.00% 3.33% 5.83%
AP drop (Visible) 26.83% 22.76% 17.07% 31.71% 26.02%
AP drop (Infrared) 42.28% 4.07% 0.81% 8.94% 13.82%

Table 3. The ASR(%) and AP drop(%) with different patch sizes.
10 15 20

ASR 66.67% 73.33% 80.83%
Occlusion Rate 5.74% 8.31% 11.09%

(a) r = 10 (b) r = 15 (c) r = 20

Figure 1. Visual examples of unified adversarial patches with dif-
ferent patch sizes.

4.4. Effects of Score-aware Iterative Evaluation

In Section 4.1.3 of the main manuscript, by comparing
the score-aware iterative fitness function with a simple sum,
we verify our method’s effectiveness in balancing differ-
ences between modalities. Here, to further demonstrate the
effectiveness of our method, we visualize their specific op-
timization processes. As shown in Figure 2, with disvis and
disinf representing the current progress towards the success
of attack in the corresponding modality (Eq.(14)-Eq.(15) in
the paper, the larger, the closer to success), our method bal-
ances the differences between the modalities and achieves
simultaneous progress for both modalities, whereas a sim-
ple sum tends to focus on a single easy-to-attack modality,
such as the infrared modality in Figure 2 (b).

4.5. Comparisons with Other Shape Methods

Wei et al. [7] propose a shape optimization of utilizing
nine-square-grid shapes to attack infrared detectors (called
as hotcold block). Because Wei et al. [7] is also a black-
box attack, we can easily combine Wei et al. [7]’s shape
modeling manner with our score-aware iterative function to
conduct the comparison. We ensure to use the same patch

(a) ours (b) sum  

Figure 2. Visualization of specific optimization processes in score-
aware iterative function and a simple sum function. dis-vis/dis-inf
in y-axis denotes the value of disvis and disinf , respectively.

number and patch size for these two methods. From Ta-
ble 4, we can see that the hotcold block only has an ASR
of 30.83% compared with our unified adversarial patches’
73.33%, which supports our belief that the search space of
such nine-square-grid shapes is greatly limited. Moreover,
as Figure 3 shown, the hotcold block’s optimized positions
may not be easy for patches to fix at, causing the instability
of physical implementation.

（a）Unified Adversarial Patch （b）HoldCold Block

Figure 3. A visual example about unified adversarial patches and
hotcold blocks.

Table 4. The Comparison between ours and hotcold block
Ours Hotcold block[7]

ASR 73.33% 30.83%
AP drop (Visible) 99.19% 51.54%
AP drop (Infrared) 74.31% 45.53%

We also compare our method with deformable shape [2].
Because deformable shape is optimized using the gradients
under a white-box setting, we don’t directly compare with
the attack performance. Instead, we give a visualization
comparison for the optimized shapes between [2] and ours
in Figure 4, where we can see that the deformable shape is
heteromorphic, and is not easy to implement in the physical
world. In contrast, our shape is more natural, and thus is
easy-to-implement to attach on the pedestrian to achieve an
effective physical attack. Besides, [2] aims to attack image
classifiers in the visible domain, while ours aim to attack



object detectors in the visible and infrared domain.

Our
Shape

Attach

Figure 4. A visualization comparison for the optimized shape be-
tween [2] and ours.
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