CroCo v2: Improved Cross-view Completion Pre-training
for Stereo Matching and Optical Flow
— Supplementary Material —

Philippe Weinzaepfel Thomas Lucas Vincent Leroy
Yohann Cabon Vaibhav Arora Romain Brégier Gabriela Csurka
Leonid Antsfeld Boris Chidlovskii Jérome Revaud
NAVER LABS Europe

https://github.com/naver/croco

Reference image

Masked target

CroCo [18]

CroCo v2 Target image

Figure 1: Cross-view reconstruction examples (pre-training pretext task) on scenes unseen during pre-training for the
original CroCo [18] and with our improvements. The images come from the Middlebury stereo benchmark [14].

In this supplementary material, we first provide visual-
izations of the capabilities of CroCo v2 on the pretext task
of cross-view completion (Section 1). We then present ad-
ditional experimental results in Section 2, including in par-
ticular (a) the impact of pre-training, (b) the runtime of our
model and (c) an analysis of the probabilistic distributions
regressed by our CroCo-Stereo model for the stereo match-
ing task. We finally detail our training setup and the dataset
splits. (Section 3).

1. Cross-view completion examples

To qualitatively evaluate the impact of CroCo v2, i.e., of
the improvements that we propose on top of the CroCo [18]
pre-training, we show several examples of cross-view com-
pletions on real-world scenes, coming either from Middle-
bury v3 [14] in Figure 1 or KITTI[1 1] in Figure 2. Note that
these methods, as MAE [4], regress pixel values that are
normalized according to the mean and standard deviation

https://github.com/naver/croco

Reference image Masked target

inside each patch, we thus apply the inverse transform for
display: this means that the overall color of each patch will
be correct, as it comes from the ground-truth values. While
the most important measure of performance of these models
is their transfer to downstream tasks, as explored in the main
paper, a qualitative observation of the fact that our improved
method is better at solving the pretext task is noteworthy.
We clearly observe that the reconstructions from the origi-
nal CroCo [18] tend to be quite blurry in many areas, which
might come from the fact that it relies on a smaller model
and was pre-trained only on synthetic data from indoor en-
vironments, while details are impressively preserved thanks
to our improvements. In Figure 1, note how the lines and
the eyes are well reconstructed in the first row, or the roads
on the maps of the third row, despite the high masking ratio
that is applied to the masked image (90%). Similarly, the
text is clearly readable on the first row of Figure 2. Some
predictions by our model have some blur (e.g. left of the
first and thirds rows of Figure 1), which makes sense be-
cause these parts are not visible in the reference image.

CroCo [18]

CroCo v2 Target image

Figure 2: Cross-view reconstruction examples (pre-training pretext task) on scenes unseen during pre-training for the
original CroCo [18] and with our improvements. The images come from the stereo benchmark of KITTT [3].

2. Further experimental results
2.1. Impact of pre-training

In Table 1, we measure the impact of the pre-training on
the downstream performance when the model is finetuned
for stereo matching or optical flow. The first two rows com-
pare our model, using our improved cross-view completion
pre-training vs. a random initialization. We observe a clear
gain of performance, e.g. on the FlyingThings flow test set
in the final rendering with an EPE of 2.45 pixels with pre-
training vs. 10.57 without it, or on the Middlebury v3 stereo
validation set with a bad@1.0px of 15.5% with pre-training
vs. 43.4% without it.

We are not aware of any other pre-training strategy, other
than cross-view completion, that readily includes a binoc-
ular decoder or architecture. While it is still possible to
initialize part of the layers using other pre-training strate-
gies, this means that some important parts of the network
are still being initialized at random. Nevertheless, to com-
pare to other pre-training strategies, we consider MAE [4]
pre-trained on ImageNet [13], thus with a cosine positional
embedding, a ViT-Base encoder, and with a Small decoder
that is randomly initialized. We compare that to the original
CroCo [18] pre-trained on synthetic data only. We observe

Stereo (bad@1.0pxJ) Flow (EPEJ)
Md ETH SFc) SF(®) FT(c) FT() Si(c) Si(h

Network initialization

RoPE positional embedding, ViT-L encoder, Base decoder, 2M Habitat + 5.3M real pre-training pairs

CroCo v2 pre-training 155 0.38 5.0 5.3 285 245 143 199

random init. 434 1.06 11.0 112 1053 10.57 4.84 5.49
cosine positional embedding, ViT-B encoder, Small decoder, 2M Habitat (synthetic only) pre-training pairs

CroCo [18] pre-training 263 1.82 6.7 7.0 389 356 207 257

MAE [4] (ImageNet) pre-training (encoder only) 35.8 1.68 8.6 8.8 5.13 483 292 382

random init. 875 542 246 246 1428 1431 899 9.76

Table 1: Impact of pre-training. We compare the performance of our final model (first row) with improved cross-view
completion pre-training to a randomly initialized version (second row). To compare to MAE [4], that is pre-trained on
ImageNet [13], and which is based on cosine positional embeddings, we make the comparison with the original CroCo in the
bottom rows.

Masking Stereo (bad@1.0px|) Flow (EPEJ)
ratio Md ETH SF(c) SF(®) FT(c) FT(®) Si(c) Si.(d
80% 32,5 1.96 7.3 7.5 429 406 206 271
85% 59.2 1.15 8.7 9.0 348 3.08 199 241
90 % 20.7 0.82 5.8 6.1 335 294 176 230

Table 2: Impact of the pre-training masking ratio for a model with RoPE positional embeddings, a ViT-B encoder, a Small

decoder, pre-trained on 2M Habitat + 5.3M real pairs.

that CroCo pre-training obtains the lowest errors, signifi-
cantly outperforming the MAE pre-training and the random
initialization.

Interestingly, the performance of this smaller model is
also significantly better than the large one without pre-
training. This again highlights the importance of the pre-
training with such generic architecture.

Masking ratio. CroCo [18] finds that using a masking ratio
of 90% performs best for cross-view completion on their
synthetic data. This is higher than the 75% masking ratio
of MAE [4], as the unmasked reference view of the same
scene adds redundancy. A question is whether this masking
ratio of 90% that has been found optimal on synthetic data
generalizes to real data. Table 2 reports the performance
on stereo and flow downstream tasks for a masking ratio of
80%, 85% and 90%. We find that a masking ratio of 90%
performs best also in the case of using real data.

2.2. Smaller training data

Most optical flow methods also report the performance
on the MPI-Sintel training set when training on Fly-
ingChairs and FlyingThings only. We report these values
in Table 3. For RAFT [19] and GMFlow [20], we report the
numbers before and after using iterative refinement proce-
dures. Interestingly, CroCo-Flow performs better than these
two methods before their refinement. Overall, our ranking
is similar to the ones on the MPI-Sintel test set where we
use more training data. This indicates that our finetuning on

MPI-Sintel(})

Method clean final
LiteFlowNet2 [0] 224 3.78
FM-RAFT [7] 1.29 2095
FlowFormer [5] 1.01 240
RAFT [16] before refinement 4.04 545
RAFT [16] 1.41 2.69
GMFlow [20] before refinement 1.31 2.96
GMFlow [20] 1.08 2.48
CroCo-Flow 1.28 2.58

Table 3: Optical flow results when training on Fly-
ingChairs and FlyingThings only. We report the EPE on
MPI-Sintel training set (clean or final rendering). Numbers
for the first three rows come from [5], numbers for RAFT
and GMFlow (before and after refinement) from [20].

geometric downstream tasks do not necessarily need large-
scale training data, despite the size of our architecture.

2.3. Runtime and tiling

Runtime. In Table 4, we report the runtime for different
sizes of our model. On one single tile of the same size as
training for stereo, i.e., 704x 352, on a NVIDIA A100 GPU.
Our method remains relatively fast on one tile, in the order
of a few tens of milliseconds.

Number of parameters. We also report the number of

Middlebury v3 (bad@1.0pxJ)

MPI-Sintel final (EPE])

Nb. tiles|

24 AT T T T 2.3 —

T

I I

-] " 1 400} |
221 1 22r 1 3001 1
181) 20 8 100 |- 4
16 j 1 1 1 1 1 1 1 1 1 i]‘9 (I | | | | 1 | | | i 0 7 1 1 I 1 I -

0 02 04 06 0.8 0 02 04 06 0.8 0 02 04 06 0.8

Overlap ratio

Overlap ratio

Overlap ratio

Figure 3: Impact of the overlap ratio between tiles during inference. We plot the stereo performance (bad@1.0px in %)
on Middlebury v3 (left) and the flow performance on MPI-Sintel in its final rendering (middle) when varying the overlap
ratio during inference with tiling. We also plot the number of tiles it represents for a 1920x 1080 image (right), which is
proportional to the total runtime, for a crop size of 704x352 as CroCo-Stereo.

Pos. Encoder Decoder runtime #Parameters
cosine ViT-B Small 25ms 139.4M (85.6M+34.0M+19.7M)
RoPE ViT-B Small 26ms 139.4M (85.6M+34.0M+19.7M)
RoPE VIT-B Base 29ms 219.7M (85.6M+114.0M+20.1M)
RoPE ViT-L Base 53ms 437.4M (303.1M+114.2M+20.1M)

Table 4: Runtime and number of parameters. Runtime
is measured for a single tile of size 704 x 352, on a NVIDIA
A100 GPU. For the number of parameters we report in
parenthesis the numbers for the encoder, the decoder and
the DPT head separately.

trainable parameters in Table 4. This number of parameters
is one order of magnitude higher than most existing stereo
and flow methods. We did not study how this number of
parameters could be reduced, and we also do not claim that
our models are better than existing work for a fixed com-
putational budget. Indeed, task-specific approaches have
the advantage of being more sample efficient, i.e., requir-
ing less data, by leveraging prior knowledge about the task.
They also have the drawback of not being readily compat-
ible with large-scale training on unlabeled data, because of
task-dependent components, which limits the use of large
generic models. Existing methods cannot be scale up to a
larger number of parameters easily, as training large mod-
els requires lot of data. In the case of stereo and optical
flow, for which labeled data is limited, this means using
self-supervised learning, which cannot be straightforwardly
applied for models that involve task-specific designs like
cost volumes, image warping, efc. Thus, our contribution
and our aim in this work is to show that pre-training large,
generic architectures and finetuning them for stereo match-
ing and optical flow is a valid path forward.

Impact of the overlap ratio during tiling. In Figure 3, we
report the performance and the number of tiles for a Full HD
image (1920x1080) when varying the overlap ratio during
inference with the tiling strategy. While the performance
improves with a higher overlap ratio, the number of tiles can
rapidly explodes. With an overlap around 0.5 or 0.7, perfor-

Figure 4: Visualization of the uncertainty predicted by
CroCo-Stereo on a few examples from the SceneFlow test
set. The first column shows the first image, the second col-
umn shows the error of the prediction clamped within the
segment [0, 10], the third column shows the logarithm of
the predicted scale of the Laplacian distribution output by
the model: green colors denote confident areas while blue
colors denote uncertain areas.

mance is quite close to the one obtained with 0.9 while the
number of tiles remains reasonable. This may thus be the
best trade-off in practical scenarios where inference time
has to stay small.

2.4. Laplacian-based loss

For flow and stereo, we regress a Laplacian distribution:
the location parameter corresponds to the disparity or flow
prediction, while the scale parameter could be seen as a
measure of uncertainty. We thus denote here by ‘uncer-
tainty’ the logarithm of the predicted scale of the Lapla-
cian distribution that our downstream model outputs, i.e.,
log(d;) from Equation 3 of the main paper.

Visualization of the uncertainty. We visualize in Figure 4

60 A

g 404

S

5 20 1 /
0- el

-2 -1 0 1 2
Predicted uncertainty

Error (px)

|

I

Sesasama—

0 20 40 60 80 100
Pixel fraction (%)

Figure 5: Statistics on the uncertainty predicted by CroCo-Stereo. We subsample 1000 points per test image from
SceneFlow in its clean renderings and compute the error of the prediction and the logarithm of the predicted scale of the
Laplacian, i.e., the pixelwise uncertainty. On the left plot, we show the median of the error for a given predicted uncertainty
(orange line), the 25- and 75-percentile in dark blue, and the 10- and 90-percentile in light blue. On the right plot, we sort
pixels according to their predicted uncertainty from the less uncertain to the more uncertain and show the median of the error
over the fractions of pixels considered (orange line), the 25- and 75-percentile in dark blue, and the 10- and 90-percentile in

light blue.

Stereo (bad@1.0px..) Flow (EPEJ)
Md ETH SF(c) SE(f) FT(c) FT() Si(c) Si(f)

L1 23.0 0.95 6.1 6.3 302 269 151 213
Lap. 155 0.38 5.0 53 285 245 143 199

loss

Table 5: Impact of the loss. We compare a standard L1 loss
vs. the Laplacian (Lap.) loss.

this uncertainty for a few examples. We observe that it is
highly linked with the error of the predicted disparity as red
areas in the error correspond to blue areas in the uncertainty
maps.

Statistics on the uncertainty. To better measure the corre-
lation of our predicted uncertainty with the error of the dis-
parity prediction, we plot a few statistics in Figure 5. On the
left one, we show some percentiles of the error when vary-
ing the predicted scale of the Laplacian distribution. We
observe that a lower uncertainty clearly corresponds to pix-
els with lowest errors, while a high uncertainty corresponds
to pixels with a higher error. On the right plot, we order pix-
els from the less uncertain to the more uncertain and show
the percentiles of errors when increasing the ratio of pix-
els considered. We observe the same behavior, showing the
correlation of our uncertainty with the error of the predic-
tion. Note that 95% of the pixels have an error below 1, thus
the scale of the y-axis of the plot.

Comparison with an L1 less. In Table 5, we quantitatively
evaluate the effect of using a loss on a Laplacian distribution
(Equation 3 of the main paper) compared to using only an
L1 loss. In the latter case, we cannot leverage the predicted
scale of a Laplacian distribution for merging overlapping
tiles. We thus follow [5] and use a weights that decrease
with the distance to the center of the image. We observe
that the Laplacian loss outperforms the L1 loss on all stereo
and flow benchmarks. A Laplacian loss can be interpreted

as an L1 term, weighted for each pixel according to an un-
certainty measure, thus allowing to downweight uncertain
pixels in practice. In addition, having access to the scale
of the Laplacian allows a more elegant merging strategy for
the overlapping tiles.

2.5. Towards smarter tiling

One limitation of our approach mentioned in the main
paper is the tiling-based inference. For instance, CroCo-
Stereo is based on crops with a width of 704 pixels, this
means that for large disparity values, the matching pixels
would be out of the scope of the corresponding tile in the
second image. As an alternative, we have tried a strategy
where a second tile in the second image is also considered,
which is shifted by 150 pixels, thus reducing the dispar-
ity value by the same amount. With the model with ViT-
Base encoder and Base decoder, such a strategy allows to
reduce the bad@1.0 from 17.1% to 12.0% on Middlebury
v3 validation set, when replacing the predictions over 200px
from the original tile, with the ones from the secondary tile.
While this strategy seems promising, it is however not really
satisfactory as it multiples the number of tiles to proceed by
2. We hope to find better strategies in the future.

3. Training details

CroCo-Stereo training. We train CroCo-Stereo for 32
epochs using batches of 6 pairs of 704x352 crops. We de-
tail the training/validation pairs we use for our ablations in
Table 6. We use the AdamW optimizer [9] with a weight
decay of 0.05, a cosine learning rate schedule with a sin-
gle warm-up epoch and a learning rate of 3.1075. During
training, we apply standard data augmentations: color jit-
tering (asymmetrically with probably 0.2), random vertical
flipping with probably 0.1, random scaling with probability

stereo dataset # pairs comment
CREStereo [3] 200,000 all training pairs
SceneFlow|[10] 70,908 Driving, Monkaa and FlyingThings in both clean and final renderings

4,370 validation pairs from FlyingThings test for each rendering (clean and final)

ETH3D Low Res [15] 30x 24
Middlebury v3 [14] 50 14

‘delivery_area_3s’, ‘electro_31" ‘playground_31’ (3 pairs) are kept apart for validation
“Vintge’ (1 pair) is kept apart for validation, we use the ‘full’ resolution

Middlebury 21 50x 335 ‘traprooml’ and ‘traproom?2’ are kept apart for validation (20 pairs)

Middlebury 14 50 132 ‘Umbrella-umperfect’ and ‘Vintage-perfect’ are kept apart for validation (6 pairs)

Middlebury 06 50x 171 ‘Rocksl’ and “Wood2’ are kept apart for validation (18 pairs)

Middlebury 05 50 45 ‘Reindeer’ is kept apart for validation (9 pairs)

Booster [12] 213 only the ‘balanced’ subset, ‘Vodka’ and ‘Washer’ sequences (15 pairs) kept apart for validation
total 306,691

Table 6: Overview of our stereo training data. We indicate here the train/val split used for the ablations, as well as the
number of training pairs. For ETH3D and Middlebury, we also consider multiple times each pair in each epoch.

flow dataset # pairs prob. comment
FlyingChairs [2] 22,232 12% -
FlyingThings [10] 80,604 40% 40,302 pairs for both ‘clean’ and ‘final’ renderings

we use the same 1,024 validation pairs from the test set as [20]
MPI-Sintel [1] 943 10% sequences ‘temple_2’ and ‘temple_3’ (98 pairs) are kept apart for validation
TartanAir [17] 306,268 38% -
total 410,047 100%

Table 7: Overview of our flow training data. We indicate here the train/val split used for the ablations, as well as the
number of remaining training pairs. During training, we set a number of images per epoch and randomly sample them among
the available datasets with the percentages shown in the column ‘prob.’.

0.8 in the range [27%-2,20-4] and stretching (resize different
along the x and y axis) with probability 0.8 in the range
[270-2,20-2] and slightly jitter the right image with proba-
bility 0.5. When submitting to the official leaderboards, we
include the pairs that were kept apart from the training sets
for validation into the training epochs.

CroCo-Flow training. We train CroCo-Flow for 240
epochs of 30,000 pairs each, randomly sampled from all
available data, using batches of 8 pairs of crops of size
384x320. We detail the training/validation pairs we use for
our ablations in Table 7. To better balance the datasets, we
set the probability of choosing a random pair from these
datasets, see Table 6. We use the AdamW optimizer, a
weight decay of 0.05, a cosine learning rate schedule with
linear warm-up over 1 epoch, and a base learning rate
of 2.1075. During training, we apply standard augmen-
tations [20]: random color jittering (asymmetrically with
probably 0.2), random scaling with probably 0.8 with a
scale sampled in [2792, 20-5] and stretching with probabil-
ity 0.8 in the range [279-2,20-2].

References

[1] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and
Michael J Black. A naturalistic open source movie for opti-

(2]

(3]

(4]

(5]

(6]

(71

8]

cal flow evaluation. In ECCV, 2012. 6

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van
Der Smagt, Daniel Cremers, and Thomas Brox. Flownet:
Learning optical flow with convolutional networks. In ICCV,
2015. 6

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In CVPR, 2012. 2

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollar, and Ross Girshick. Masked Autoencoders are Scal-
able Vision Learners. In CVPR, 2022. 1,2, 3

Zhaoyang Huang, Xiaoyu Shi, Chao Zhang, Qiang Wang,
Ka Chun Cheung, Hongwei Qin, Jifeng Dai, and Hongsheng
Li. FlowFormer: A transformer architecture for optical flow.
In ECCV, 2022. 3,5

Shihao Jiang, Yao Lu, Hongdong Li, and Richard Hartley.
Learning optical flow from a few matches. In CVPR, 2021.
3

Shihao Jiang, Yao Lu, Hongdong Li, and Richard Hartley.
Learning optical flow from a few matches. In CVPR, 2021.
3

Jiankun Li, Peisen Wang, Pengfei Xiong, Tao Cai, Ziwei
Yan, Lei Yang, Jiangyu Liu, Haoqiang Fan, and Shuaicheng
Liu. Practical stereo matching via cascaded recurrent net-
work with adaptive correlation. In CVPR, 2022. 6

(9]

(10]

(1]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay
Regularization. In ICLR, 2019. 5

Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In CVPR, 2016. 6
Moritz Menze and Andreas Geiger. Object scene flow for
autonomous vehicles. In CVPR, 2015. 1

Pierluigi Zama Ramirez, Fabio Tosi, Matteo Poggi, Samuele
Salti, Stefano Mattoccia, and Luigi Di Stefano. Open chal-
lenges in deep stereo: the booster dataset. In CVPR, 2022.
6

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. 1JCV, 2015. 2,3

Daniel Scharstein, Heiko Hirschmiiller, York Kitajima,
Greg Krathwohl, Nera NeSi¢, Xi Wang, and Porter West-
ling. High-resolution stereo datasets with subpixel-accurate
ground truth. In GCPR, 2014. 1,6

Thomas Schops, Johannes L Schonberger, Silvano Galliani,
Torsten Sattler, Konrad Schindler, Marc Pollefeys, and An-
dreas Geiger. A multi-view stereo benchmark with high-
resolution images and multi-camera videos. In CVPR, 2017.
6

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In ECCV, 2020. 3

Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu,
Yuheng Qiu, Chen Wang, Yafei Hu, Ashish Kapoor, and Se-
bastian Scherer. Tartanair: A dataset to push the limits of
visual slam. In IROS, 2020. 6

Weinzaepfel, Philippe and Leroy, Vincent and Lucas,
Thomas and Brégier, Romain and Cabon, Yohann and
Arora, Vaibhav and Antsfeld, Leonid and Chidlovskii, Boris
and Csurka, Gabriela and Revaud Jérome. CroCo: Self-
Supervised Pre-training for 3D Vision Tasks by Cross-View
Completion. In NeurlPS, 2022. 1,2,3

Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, and
Dacheng Tao. Gmflow: Learning optical flow via global
matching. In CVPR, 2022. 3

Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi,
Fisher Yu, Dacheng Tao, and Andreas Geiger. Unifying flow,
stereo and depth estimation. /IEEE Trans. PAMI, 2023. 3, 6

