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A. Implementation Details

A.1. Experiment Setting Details

The split of labelled (‘Old’) and unlabelled (‘New’) cat-
egories follows GCD [16]. That is, 50% of all classes are
sampled as ‘Old’ classes (Yl), and the rest are regarded
as ‘New’ classes (Yu \ Yl). The exception is CIFAR100,
for which 80% classes are sampled as ‘Old’, following the
novel category discovery (NCD) literature. Regarding the
sampling process, for generic object recognition datasets,
the labelled classes are selected by their class index (the
first |Yl| ones). For the Semantic Shift Benchmark, data
splits provided in [17] are adopted. For Herbarium 19 [14],
the labelled classes are sampled randomly. Additionally,
for ImageNet-1K [4] which is not used in [16], we follow
its fashion to select the first 500 classes sorted by class id as
the labelled classes. Then for all datasets, following [16],
50% of the images from the labelled classes are randomly
sampled to form the labelled dataset Dl, and all remain-
ing images are regarded as the unlabelled dataset Du. All
experiments are done with a batch size of 128 on a single
GPU, except for ImageNet-1K, on which we train with eight
GPUs, scale the learning rate with the linear scaling rule,
and keep the per-GPU batch size unchanged. The inference
time on ImageNet-1K is still evaluated with one GPU.

A.2. Re-implementing Previous Works

Results of GCD [16] are taken from the original paper
(if available), and otherwise re-implemented with the offi-
cial codebase. One exception is ImageNet-1K [4], which
was not evaluated by the authors. Since naively adopting
their official codebase to ImageNet-1K fails as the semi-
supervised k-means procedure requires too much GPU
memory and cannot be done with available hardware, we
drop the k-mean++ initialisation [1] which takes the most
memory, and re-implement the method with faiss [8] for
speed up (otherwise the evaluation takes more than one
day). The results are in the main paper, compared to our
proposed strong baseline SimGCD, GCD requires signifi-
cantly more time to run and more engineering efforts, and
yet achieves a lower performance than SimGCD, which
demonstrates the effectiveness of our proposed method. Re-
sults of UNO+ [6] and RS+ [7], which are adaptations of
the original works to the GCD task, are directly taken from
the GCD [16] paper. Also note that unlike UNO [6], our
method does not adopt the over-clustering trick for simplic-
ity. Results of ORCA [2] are re-implemented with the of-
ficial codebase. We align the details in dataset split and
backbone (ViT-B/16 [5] pre-trained with DINO [3]) with
GCD [16] for a fair comparison.

A.3. Error Analysis Details

We briefly clarify the details of obtaining the four kinds
of prediction errors in the main paper: we first rank the cat-
egory indexes in consecutive order, such that by index, all
‘Old’ classes are followed by all ‘New’ classes. We then
compute the full confusion matrix, with each element sum-
marising how many times images of one specific class (row
index) are predicted as one class (column index). All ele-
ments are divided by the number of testing samples to ac-
count for the percentage. We then reduce the diagonal terms
to zero (representing correct predictions), and thus all re-
maining elements represent different kinds of prediction er-
rors (i.e., absolute contribution to the errors of ‘All’ ACC).
Finally, we slice the confusion matrix into four sub-matrices
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Figure 1. Complete error analysis results of SimGCD on five representative datasets. With appropriate entropy regularisation, the
bias between ‘Old’/‘New’ classes (see “False New” and “False Old” errors) are generally effectively alleviated, except in the long-tailed
Herbarium 19 that the effect varies. Also notably, “True New” errors are consistently penalised to a considerable extent, confirming entropy
regularisation’s ability in helping recognise and distinguish between novel categories.

at the boundaries between the ‘Old’ and ‘New’ classes, and
add all elements in each sub-matrix together, thus obtaining
the final error matrix standing for the four kinds of predic-
tion errors. Such a way of error classification helps distin-
guish the prediction bias between and within seen and novel
categories, and thus facilitates the design of new solutions.
Note that the diagonal elements, e.g., ‘True Old’ predic-
tions, do not stand for correct predictions, but for cases that
incorrectly predicting samples of one specific ‘Old’ class to
another wrong ‘Old’ class.

B. Extended Experiments And Discussions
B.1. Main Results

We present the full results of SimGCD in the main paper
with error bars in Tab. 1. The results are obtained from three
independent runs and thus avoid randomness.

Dataset All Old New

CIFAR10 [10] 97.1±0.0 95.1±0.1 98.1±0.1
CIFAR100 [10] 80.1±0.9 81.2±0.4 77.8±2.0
ImageNet-100 [15] 83.0±1.2 93.1±0.2 77.9±1.9
ImageNet-1K [4] 57.1±0.1 77.3±0.1 46.9±0.2
CUB [18] 60.3±0.1 65.6±0.9 57.7±0.4
Stanford Cars [9] 53.8±2.2 71.9±1.7 45.0±2.4
FGVC-Aircraft [11] 54.2±1.9 59.1±1.2 51.8±2.3
Herbarium 19 [14] 44.0±0.4 58.0±0.4 36.4±0.8

Table 1. Complete results of SimGCD in three independent runs.

B.2. Unknown Category Number

In the main text, we showed that the performance of
SimGCD is robust to a wide range of estimated unknown
category numbers. In this section, we report the results with
the number of categories estimated using an off-the-shelf
method [16] (Tab. 2) or with a roughly estimated relatively
big number (two times of the ground-truth K), and compare
with the baseline method GCD [16].

The results on CIFAR100 [10], ImageNet-100 [4],
CUB [18], and Stanford Cars [9] are available in Tabs. 3
and 4. Our method shows consistent improvements on four
representative datasets when K is unknown, no matter with

CIFAR100 ImageNet-100 CUB SCars Herb19

GT K 100 100 200 196 683
Est. K 100 109 231 230 520

Table 2. Number of categories K estimated using [16].

CIFAR100 ImageNet-100

Methods Known K All Old New All Old New

GCD [16] ✓ 73.0 76.2 66.5 74.1 89.8 66.3
SimGCD ✓ 80.1 81.2 77.8 83.0 93.1 77.9

GCD [16] ✗ (w/ Est.) 73.0 76.2 66.5 72.7 91.8 63.8
SimGCD ✗ (w/ Est.) 80.1 81.2 77.8 81.7 91.2 76.8
SimGCD ✗ (w/ 2K) 77.7 79.5 74.0 80.9 93.4 74.8

Table 3. Results on generic image recognition datasets.

CUB Stanford Cars

Methods Known K All Old New All Old New

GCD [16] ✓ 51.3 56.6 48.7 39.0 57.6 29.9
SimGCD ✓ 60.3 65.6 57.7 53.8 71.9 45.0

GCD [16] ✗ (w/ Est.) 47.1 55.1 44.8 35.0 56.0 24.8
SimGCD ✗ (w/ Est.) 61.5 66.4 59.1 49.1 65.1 41.3
SimGCD ✗ (w/ 2K) 63.6 68.9 61.1 48.2 64.6 40.2

Table 4. Results on the Semantic Shift Benchmark [17].

the category number estimated with a specialised algorithm
(w/ Est.), or simply with a loose estimation that is two times
the ground truth (w/ 2K, other values are also applicable
since our method is robust to a wide range of estimations).
This property could ease the deployment of parametric clas-
sifiers for GCD in real-world scenarios.

B.3. Extended Analyses

In supplementary to the main paper, we present a more
complete version of the analytical experiments.

In Fig. 1, we show the error analysis results of SimGCD
over five representative datasets that cover coarse-grained,
fine-grained, and long-tailed classification tasks. Overall,
it shows that the entropy regulariser mainly helps in over-
coming two types of errors: the error of misclassification
between ‘Old’/‘New’ categories, and the error of misclassi-
fication within ‘New’ categories. One exception is the long-
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Figure 2. Complete per-class prediction distribution results of SimGCD on five representative datasets. Proper entropy regularisation
helps overcome the prediction bias in both ‘Old’ classes and ‘New’ classes, and fits the ground-truth distribution. The conclusion is
consistent across generic classification datasets, fine-grained classification datasets, and naturally long-tailed datasets.

tailed Herbarium 19 dataset, in which the models’ “False
Old” errors also increased, and our intuition is that the long-
tailed distribution adds to the difficulty in discriminating
between ‘Old’ and ‘New’ categories. Still, the gain in dis-
tinguishing between novel categories is consistent, and we
provide a further analysis via per-class prediction distribu-
tions in the next paragraph.
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Figure 3. A closer look at the per-class distributions. Notably,
although the entropy regularisation term is formulated to approach
uniform distribution, it could make the models’ predictions more
biased on the class-balanced ImageNet-100 dataset when the reg-
ularisation is too strong. Interestingly, it also could help fit the
distribution of the long-tailed Herbarium 19 dataset.

In Fig. 2, we show the complete per-class prediction
results of SimGCD to further analyse the entropy regu-
lariser’s effect in overcoming the classification errors within
‘Old’ and ‘New’ classes, and it consistently verifies the help
in alleviating the prediction bias within ‘Old’ and ‘New’
classes, and better fitting the ground-truth class distribution.
In Fig. 3, we present a closer look at ImageNet-100 and
Herbarium 19. The entropy regularisation term is formu-

lated to make the model’s predictions closer to the uniform
distribution. But interestingly, we empirically found that
it could make the models’ predictions more biased on the
class-balanced ImageNet-100 dataset when the regularisa-
tion is too strong. And when the dataset itself is long-tailed
(Herbarium 19), it also could help fit the ground-truth distri-
bution. We also note that the self-labelling strategy adopted
by UNO [6] forces the predictions in a batch to be strictly
uniform, which may account for its inferior performance.
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Figure 4. Per-class prediction distributions using different
category numbers on ImageNet-100 and Herbarium 19. Our
method effectively identifies the criterion for ‘New’ classes, thus
keeping the number of active prototypes close to the ground-truth
class number. Notably, a loose category number greater than the
ground truth may harm fitting the class-balanced ImageNet-100
dataset, but could help fit the distribution of the long-tailed Herbar-
ium 19 dataset.

In Fig. 4, we also show the per-class prediction distribu-
tions using different category numbers. The results on the
class-balanced ImageNet-100 are consistent with the results
on CIFAR100 and CUB in the main paper, using a loose cat-
egory number greater than the ground truth may harm fitting
the ground-truth class distribution, yet the model still man-
ages to find the ground truth category number. Interestingly,
we also find that for the long-tailed Herbarium 19 dataset,
using a greater category number could in fact help fit the
ground-truth distribution.



CIFAR100 ImageNet-100 CUB Stanford Cars Herbarium 19

Method Logit Adjust All Old New All Old New All Old New All Old New All Old New

ORCA [2] ✓ 69.0 77.4 52.0 73.5 92.6 63.9 35.3 45.6 30.2 23.5 50.1 10.7 20.9 30.9 15.5
DebiasPL [20] ✓ 60.9 69.8 43.1 43.5 59.1 35.6 38.1 44.2 35.0 31.1 49.6 22.1 30.1 39.1 25.3

UNO+ [6] ✗ 69.5 80.6 47.2 70.3 95.0 57.9 35.1 49.0 28.1 35.5 70.5 18.6 28.3 53.7 14.7
GCD [16] ✗ 73.0 76.2 66.5 74.1 89.8 66.3 51.3 56.6 48.7 39.0 57.6 29.9 35.4 51.0 27.0
SimGCD ✗ 80.1 81.2 77.8 83.0 93.1 77.9 60.3 65.6 57.7 53.8 71.9 45.0 44.0 58.0 36.4

Table 5. Comparison to imbalanced recognition-inspired methods.

B.4. Relationship to Imbalanced Recognition

Our work also shares motivation with literature in long-
tailed/imbalanced recognition [12, 19, 13], in which resolv-
ing the imbalance in models’ prediction is also an important
issue. Technically, they commonly depend on a prior class
distribution to adjust classifiers’ output, which is not acces-
sible in GCD since labels for novel classes are unknown.
One could also estimate this distribution online from predic-
tions, which is inaccurate due to its open-world nature. We
note one baseline (ORCA [2]) compared in the paper also
shares key intuition with these works (adaptive margin). We
also reimplement one close work that operates on imbal-
anced semi-supervised learning, i.e., DebiasPL [20], align-
ing representation learning with GCD, and show a compar-
ison in Tab. 5. DebiasPL surpasses UNO+ on fine-grained
classification in novel classes and verifies it could overcome
the prediction imbalance to some extent. It also outperforms
ORCA but still lags behind GCD and ours. We hypothesise
manually altering logits may not be suitable for open-world
settings. Instead, a more natural and general solution could
be to regularise prediction statistics and let the model adjust
via optimisation.
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scale similarity search with GPUs. IEEE Transactions on
Big Data, 2019. 1

[9] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
ICCV Workshops, 2013. 2

[10] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical Report, 2009.
2

[11] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew
Blaschko, and Andrea Vedaldi. Fine-grained visual classi-
fication of aircraft. arXiv preprint arXiv:1306.5151, 2013.
2

[12] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh
Rawat, Himanshu Jain, Andreas Veit, and Sanjiv Kumar.
Long-tail learning via logit adjustment. In ICLR, 2021. 4

[13] Jiawei Ren, Cunjun Yu, Xiao Ma, Haiyu Zhao, Shuai Yi, and
Hongsheng Li. Balanced meta-softmax for long-tailed visual
recognition. In NeurIPS, 2020. 4

[14] Kiat Chuan Tan, Yulong Liu, Barbara Ambrose, Melissa
Tulig, and Serge Belongie. The herbarium challenge 2019
dataset. arXiv preprint arXiv:1906.05372, 2019. 1, 2

[15] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-
trastive multiview coding. In ECCV, 2020. 2

[16] Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisser-
man. Generalized category discovery. In CVPR, 2022. 1, 2,
4

[17] Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisser-
man. Open-set recognition: A good closed-set classifier is
all you need? In ICLR, 2022. 1, 2

[18] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. Caltech-UCSD Birds 200. Com-
putation & Neural Systems Technical Report, 2010. 2

[19] Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu, and
Stella X Yu. Long-tailed recognition by routing diverse
distribution-aware experts. In ICLR, 2021. 4

[20] Xudong Wang, Zhirong Wu, Long Lian, and Stella X Yu.
Debiased learning from naturally imbalanced pseudo-labels.
In CVPR, 2022. 4


