
Appendix of SimNP: Learning Self-Similarity Priors Between Neural Points

1. Content

In this supplementary material, we present ablation stud-
ies of our method SimNP in Section 2. Section 3 deals with
additional point cloud supervision signals at test time. We
make an argument about the quality of the PSNR metric in
Section 4. Additional visualizations of learned symmetries
(including a detailed description of how they are obtained)
are shown in Section 6. Sections 7 and 8 elaborate on de-
tails regarding the evaluation and architecture. Finally, we
provide additional qualitative results in Section 9.

2. Ablation Studies

Representing Category-Level Self-Similarities. In
Tab. 4, we present the results of our ablation studies with
respect to shared features, attention definition, and number
of embeddings. We can observe that the shared features
are essential to train a high-quality category-level neural
point renderer. They are further investigated qualitatively
in Section 5. We also test to obtain our matrix A via dot
products between optimized keys (one per embedding) and
queries (one per neural point) instead of directly optimizing
A, which leads to a marginal drop in performance. As
this alternative formulation is more flexible in terms of
the number of neural points though, the results indicate
potential for an extension of SimNP from object to scene
level. Finally, with an increasing number of embeddings,
PSNR and SSIM decrease slightly in turn for improved
LPIPS. We explain this behavior with the effect of blur on
the different metrics, which we further investigate in Sec. 4.
The smaller the number of embeddings, the smoother are
the reconstructions, up to the same number of embeddings
as neural points (512). Even more embeddings result in
less information sharing and therefore worse generalization
to novel views. In total, we can observe that except for
existence of shared features, our approach is very robust
to changes in these hyperparameters as the quality of the
results differs only slightly.

Coherent Point Cloud Prediction. We ablate the en-
coder used for point cloud supervision at test time with re-
spect to additional input data and data augmentations during
training. The results are shown in Tab. 1. The ray encod-

Rays Mask Aug CD↓ (×10−3)

✗ ✗ ✗ 1.2103
✓ ✗ ✗ 1.1977
✗ ✓ ✗ 1.1634
✓ ✓ ✗ 1.1434
✓ ✓ ✓ 1.1028

Table 1: Point cloud prediction ablation. The 3D Chamfer
distance is computed between the ground-truth point cloud
and the one obtained by decoding the ResNet18 output for
view 64 of all test examples. By using ray encodings [1]
(Rays) and the segmentation mask (Mask) as additional in-
puts for the encoder, we can improve the point cloud predic-
tion. Furthermore, random color jitter and grayscale aug-
mentations (Aug) result in better generalization.

Method PSNR↑ SSIM↑ LPIPS↓
PixelNeRF [2] 23.17 0.905 0.112
Ours 23.00 0.911 0.081
Ours + Blur 23.31 0.913 0.092

Table 2: Effect of blur. By applying a Gaussian blur on
our rendered images, we can boost our PSNR results to out-
perform the strongest baseline with respect to this metric.
However, this comes with worse results in LPIPS.

Supervision PSNR↑ SSIM↑ LPIPS↓
Mask 23.00 0.911 0.081
Mask + Depth 23.28 0.915 0.079
Point Cloud 23.69 0.920 0.077

Table 3: Point cloud supervision on ShapeNet cars. Uti-
lizing a depth map can partly bridge the gap between our
purely 2D point cloud supervision and the use of ground-
truth point clouds.

ings [1] as well as the segmentation mask individually de-
crease the 3D Chamfer distance between the ground-truth
point clouds and the ones predicted for view 64 of each test
example. Given the ray encodings, the encoder is less likely
to confuse the pose of the object, e.g., in case of almost



Configuration 1 Input View 1 Input View (Sym.) 2 Input Views
S A M PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
✗ ✓ 512 22.37 0.898 0.106 22.02 0.894 0.114 25.66 0.937 0.069

✓ ✗ 512 22.76 0.908 0.084 22.47 0.905 0.086 26.38 0.945 0.057

✓ ✓ 128 23.09 0.913 0.083 22.81 0.911 0.084 26.92 0.949 0.058
✓ ✓ 256 23.06 0.912 0.082 22.76 0.910 0.084 26.84 0.949 0.055
✓ ✓ 512 23.00 0.911 0.081 22.67 0.908 0.084 26.67 0.948 0.053
✓ ✓ 1024 22.81 0.909 0.083 22.47 0.905 0.087 26.37 0.947 0.054

Table 4: Ablation studies on ShapeNet cars. S represents if shared features S are being used, A represents direct parame-
terization of the attention map A (✓) vs. the common calculation of attention with (shared) keys and queries (✗), and M is
the number of embeddings. The gray row shows the configuration from the main paper.

symmetric front and back sides of cars. Due to the light-
ing used for rendering the dataset, we have observed that
some white cars fade into the white background. Therefore,
we attribute the improvements gained by leveraging the seg-
mentation mask as input to such examples. Finally, we em-
ploy color jitter and grayscale data augmentations during
training to enhance generalization.

3. Additional Point Cloud Supervision

By leveraging the autodecoder framework, we allow for
flexible supervision at test time. Table 3 compares different
forms of point cloud supervision. SimNP can effectively
utilize additional depth maps or ground truth point clouds.

4. Effect of Blur

To support our claim that the state-of-the-art single-view
PSNR results are due to the metric favoring blurry recon-
structions, we postprocess our test predictions by applying
a Gaussian filter with standard deviation 0.6. Table 2 shows
that simply blurring our renderings is enough to raise the
PSNR above the one of PixelNeRF [2]. Interestingly, SSIM
is also affected positively, in contrast to LPIPS, which gets
worse. We conclude that the two standard image quality
metrics are rather biased towards blurry images such that
we suggest to focus more on perceptual metrics like LPIPS.

5. Category-Level Template

In order to investigate the effect of the shared features,
we set the instance-specific embeddings to zero. Figure 1
shows the templates learned by the shared features S. Be-
sides the general shape of a car for a given point cloud in-
cluding details like side mirrors, the shared features also
encode common textures like wheels, windows, and lights.
Furthermore, by decoding random point cloud latent codes
z, we always obtain plausible point clouds indicating that
point latent plus shared components learn a deformable

category-level template, which can be filled with individual
details by fitting embeddings E to observations.

6. Learned Symmetries
We visualize the attention scores for seven more embed-

dings in Fig. 2. To evaluate a pixel’s radiance c ∈ R3, the
usual volume rendering formulation proposed by NeRF ac-
cumulates the radiance for K sample points {xi ∈ R3}Ki=1

along the ray though the pixel as:

c =

K∑
i=1

τi(1− exp(−σi∆i))ri (1)

τi = exp

−
i−1∑
j=1

σj∆j

 (2)

∆i = ∥xi − xi−1∥2 , (3)

where σi and ri are the density and radiance of sample xi.
In order to obtain the influence of each neural point on the
pixel, we simply replace the radiance ri in Eq. 1 with the
normalized inverse distances wi ∈ RN between the sample
point and each neural point neighbor:

wi[j] =

{
w(xi,pj)

W , if j ∈ N (xi)

0, otherwise,
(4)

where N is the k-nearest neural point function, pj the coor-
dinates of the j-th neural point, w the inverse point distance,
and W the sum of these weights in the neighborhood, as de-
fined in Section 3.2 of the paper. Once we have rendered the
neural point weights c ∈ RN for each pixel, the influence
i ∈ RM of each embedding can be obtained by multiplying
the learned attention scores:

i = softmax(A) · c. (5)

7. Evaluation Details
Evaluation of Render Time. Table 1 of the paper pro-
vides time measurements for rendering a single view. For



Mean 5 Random PC Latent Codes

Figure 1: Learned car template. By rendering all-zero embeddings E, we visualize the template learned by the shared
features S. The left column shows results for a zero point cloud latent code z, whereas the remaining ones are obtained by
sampling random vectors for point clouds.

a fair comparison, we separated the actual rendering func-
tionality from all preceding inference steps in the code pro-
vided by the authors. For example, for VisionNeRF and
PixelNeRF we only count the ray casting, feature sampling,
and rendering MLPs as rendering, not the inference of fea-
ture maps. We evaluate each method on all 251 views of
five random test examples and average the timings per view.
None of the methods use any form of radiance caching or
amortized rendering but render each view individually. The
experiments were performed on a single RTX 8000 GPU.

Sym. Setup for Symmetric Views. Besides the render
time, Table 1 of the paper also presents results for single-
view reconstruction of views that show mostly the object
side opposite to the input view. To be more precise, we
choose the view index intervals 0-33, 74-112, and 152-191.
These are all views with the camera being on the right side
of the car up to a certain height, as the input view shows
the object from the front left. Note that this subset also con-
tains views of the rear, which are more challenging for our
method because of missing similarities to observed areas.

8. Architecture Details
The architecture is composed of the point cloud predic-

tion network, the attention representing the category-level
symmetries, and the rendering network. For point cloud
prediction, we use a four-layer MLP with hidden dimen-
sions 256, 128, 64, and ReLU activation function. As input,
it gets the latent code z ∈ Rl with l = 512. The final layer
outputs the coordinates of all N = 512 neural points inside
a cube of side length 2 using the hyperbolic tangent.

The rendering network consists of the kernel Kθ and
density and radiance function Fψ . Kθ is implemented as
a five-layer MLP with output dimension 256. Fψ consists
of two separate branches: another five-layer MLP for radi-
ance prediction and a two-layer MLP for the density. All
MLPs of the rendering network use 256 as the number of
hidden dimensions and LeakyReLU as non-linearity.

9. Additional Qualitative Results
We present results for coherent point cloud prediction in

Figure 3. These results are obtained using the Ours setup
from the main paper. The point colors encode point identity



over multiple subjects. It can be seen that the resulting point
clouds behave coherent such that individual points represent
the same object parts over multiple instances.

Further, we present additional qualitative results for
single-view reconstruction in Figure 4, two-view recon-
struction in Figure 5, and interpolation in Figure 6.

References
[1] Daniel Watson, William Chan, Ricardo Martin Brualla,

Jonathan Ho, Andrea Tagliasacchi, and Mohammad Norouzi.
Novel view synthesis with diffusion models. In Int. Confer-
ence on Learning Representations (ICLR), 2023.

[2] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelNeRF: Neural radiance fields from one or few images.
In Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.



R
G
B

A
tt
en
ti
on

S
co
re
s
fo
r
7
E
m
b
ed
d
in
gs

Figure 2: Attention visualization. We render the influence of seven different embeddings (one per row) on each ray.



Input Point Cloud Prediction

Figure 3: Coherent point cloud prediction. The point color encodes the point identity given by the order of the output
tensor that is predicted by the point MLP. It can be seen that these identities behave coherent over multiple instances. This
allows the formulation of shared features S. Also, these coherent identities provide correspondences between instances.



InputTargetOursVisionNeRFPixelNeRFSRN

Figure 4: Single-view reconstruction. Additional qualitative results that show that our method is better in replicating details
on the symmetric side of the object.



InputsTargetOursPixelNeRFSRN

Figure 5: Two-view reconstruction. Additional qualitative results that show our method is better in representing highly
detailed objects from just two views.



PC Latent z
+

Embeddings E

Embeddings E

PC Latent z

Figure 6: Disentangled interpolation. Additional qualitative results that highlight the ability of interpolating embeddings,
point clouds and both together.


