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A. Transformer-based Object Detectors

In Section 4 of our manuscript, we provide a compre-
hensive comparison of our SAFE OOD detector to the cur-
rent state-of-the-art in OOD object detectors. Specifically,
our results in Section 4.3 and Table 1 demonstrated that
SAFE achieves state-of-the-art performance across both the
ResNet-50 and RegNetX4.0 backbone architectures. In these
comparisons, the object detector architecture, Faster-RCNN,
remains static.

Notably, our theory in Section 3.1 of the manuscript only
requires the presence of our SAFE layers in the backbone of
the object detector network. Thus, we further test the gener-
alisability of our SAFE OOD object detector by evaluating
the performance when applied to a different, transformer-
based, object detector. Specifically, we compare SAFE to
the benchmark proposed in [3] which performs OOD object
detection on the Deformable DETR [19] object detector.

A.1 Experimental Setup

Following [3], we use the same evaluation protocol de-
fined in [4] for our comparisons of SAFE to state-of-the-art
OOD object detectors on the transformer-based Deformable
DETR [19] object detector.

Datasets Consistent with Section 4.1 of our manuscript,
we use PASCAL-VOC [5] and BDD100K [18] as our ID
datasets with MS-COCO [11] and OpenImages [9] as our
OOD datasets.

Evaluation Metrics Following the standard evaluation
protocol [4, 3], we use the same AUROC and FPR95 metrics
as defined in Section 4.1 of our manuscript.

Baselines We compare against the following state-of-
the-art methods: Mahalanobis Distance [10], Gram Matri-
ces [14], KNN [15], CSI [16], OW-DETR [7], Dismax [12],
VOS [4] and SIREN [3]. SIREN can be evaluated with either
the original von-Mises Fischer distribution (SIREN-vMF)

or in combination with KNN (SIREN-KNN). Performance
metrics of baselines are all reported from [3].

Base Network Architecture We implement the De-
formable DETR [19] object detector with a ResNet-50 [8]
backbone pre-trained on ImageNet [13]. Of the compared
methods, CSI [16], OW-DETR [7], Dismax [12], VOS [4]
and SIREN [3] all require the object detector to be retrained
following a custom loss objective, we identify these methods
with a checkmark ✓ in Supplementary Table 1.

Implementation As the Deformable DETR object de-
tector uses a ResNet-based backbone, we follow the same
implementation as in Section 4.2 of our manuscript. Specifi-
cally, we instantiate a 3-layer auxiliary MLP which takes the
object-specific vectors from the SAFE layers as input and
outputs a single OOD score for each object. The auxiliary
MLP is trained on the surrogate task of discriminating clean
ID samples from ID samples perturbed with the FGSM [6]
adversarial-perturbation. We set the scalar magnitude multi-
plier for FGSM to be ϵ = 8, the same optimum value found
for the ResNet-50 backbone in Section 4.5 and Figure 4 of
our manuscript.

A.2 Results and Discussion

Supplementary Table 1 extends the quantitative evaluations
from our manuscript, comparing our SAFE OOD detector to
the current state-of-the-art in OOD object detection with the
transformer-based Deformable DETR object detector [19].

Congruent with the results on the Faster-RCNN model,
SAFE achieves state-of-the-art performance, outperforming
the previous state-of-the-art SIREN-KNN [3] in 7 out of the
8 total benchmark permutations. In particular, SAFE boasts
substantial performance improvements in the PASCAL-VOC
setting, with absolute reductions in FPR95 of 57.00% for
OpenImages and 15.89% for MS-COCO. Furthermore, all
methods other than SIREN [3] and Dismax [12] achieve near-
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ID: PASCAL-VOC ID: Berkeley DeepDrive-100K
Method Retrain? OpenImages MS-COCO OpenImages MS-COCO

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
Mahalanobis [10] 49.08 97.88 50.28 97.39 77.98 71.43 76.83 70.86
Gram [14] 38.81 95.29 43.97 94.16 57.14 71.56 60.13 73.81
KNN [15] 59.64 91.36 62.15 91.80 79.64 61.13 80.90 64.75
CSI [16] ✓ 51.37 79.16 55.07 84.00 76.42 71.30 77.93 70.27
OW-DETR [7] ✓ 57.80 93.82 55.70 93.09 73.78 77.37 70.29 80.78
Dismax [12] ✓ 70.66 76.37 75.21 82.05 67.18 81.23 72.14 77.62
VOS [4] ✓ 52.77 97.07 54.40 97.46 76.62 72.58 77.33 76.44
SIREN-vMF [3] ✓ 71.05±0.1 78.36±1.0 76.10±0.1 75.49±0.8 79.77±1.2 66.31±0.9 80.06±0.5 67.54±1.3
SIREN-KNN [3] ✓ 74.93±0.1 65.99±0.5 78.23±0.2 64.77±0.2 89.00±0.4 47.28±0.3 86.56±0.1 53.97±0.7
SAFE (ours) 96.73±0.7 8.99±1.4 78.88±1.0 48.88±1.5 94.31±0.7 21.10±2.0 85.95±1.1 39.18±2.0

Supplementary Table 1: OOD detection results comparing SAFE to state-of-the-art OOD detectors on the transformer-based
Deformable DETR [19] object detector with a ResNet-50 backbone. Comparison metrics are FPR95 and AUROC, directional
arrows indicate if higher (↑) or lower (↓) values indicate better performance. Best results are shown in red and bold, second
best results are shown in orange. Methods that require retraining are indicated with a checkmark ✓. Mean and standard
deviation over 5 seeds is shown for SAFE in the format of µ± σ. SAFE provides consistently strong performance

random performance when PASCAL-VOC is the ID dataset –
resulting in SAFE reducing the FPR95 of post-hoc detectors
by 82.37% from 91.36%→8.99% (KNN [15]→SAFE) when
OpenImages is the OOD set. Similarly, when BDD100K
is the ID set we observe strong reductions in FPR95 with
26.18% for OpenImages and 14.79% in MS-COCO. Notably,
the only metric in which SAFE does not report the best
performance (AUROC for BDD100K→MS-COCO) is less
than 1% from achieving state-of-the-art performance.

In summary, SAFE, which does not require retraining,
outperforms OOD detectors that do require retraining, and
significantly outperforms other post-hoc OOD detectors
across varying backbone and object detector architectures.

B. Alternative Transforms

In Sections 3 & 4 of the manuscript, we posit that the
SAFE critical layers, composed of a residual convolution
layer followed by batch normalisation, are disproportion-
ately powerful for OOD detection. Specifically, Section 4.4
demonstrated superior sensitivity of the SAFE critical lay-
ers when a MLP is trained via a surrogate training task. In
the manuscript, the surrogate training task we proposed was
adversarial perturbation detection.

Here, our aim is to show that the SAFE critical layers can
also detect less targeted input variations, as per our theory
from Section 3.1.We thus evaluate the performance of SAFE
when the surrogate task is to distinguish clean ID samples
from those perturbed by a simple additive noise transfor-
mation. In particular, we use additive noise sampled from
a uniform distribution, x+ ∼ U(αw, αw) with magnitude
multiplier αw.

Supplementary Figure 1 visualises the input perturbation
signal and resultant effect on an input sample for FGSM [6]

(Top) and Noise (Bottom) at varied perturbation magnitudes.
For both transforms, we observe that the optimal value found
for SAFE (ϵ = 8 for FGSM [6] and αw = 30 for Noise)
result in perturbed samples that are imperceptibly different
to the original image, whilst large magnitudes that produce
perceptible differences result in degraded performance.

B.1 Robustness to input variations

Supplementary Table 2 compares the performance when
using an additive noise transformation (Noise) or an adver-
sarial attack as in the manuscript (FGSM [6]) against the
current state-of-the-art, VOS [4]. Consistent with the theory
described in Section 3, even in the case where the auxiliary
MLP is trained with simple additive noise transform, the
SAFE critical layers are sensitive enough to produce a strong
signal for OOD object detection. While the Noise transfor-
mation leads to an approximately 2% AUROC reduction
when compared to our proposed adversarial attack transform,
it still outperforms the previous state-of-the-art across the
majority of benchmarks.

Supplementary Figure 2 provides the same magnitude
ablation for the Noise perturbation as Figure 2 did in the
manuscript for FGSM [6]. As expected, the existing trend of
increasing performance to a peak followed by a decrease in
performance for FGSM holds for the Noise transformation.

B.2 Universally high performance of SAFE layers

As discussed in Section 4.3 of our manuscript, prior
works [1, 2, 14, 17] in OOD classification have highlighted
the variability of layer performance under distributional shift.
In this section, we demonstrate that the SAFE layers are high
performing irrespective of the input transformation that is
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Supplementary Figure 1: Visualisation of the input perturbation functions and impact sample ID images at varying magnitudes.
Top: Perturbation function is FGSM [6]. Bottom: Perturbation function is Noise. Numbers above each image correspond to
the magnitude multiplier applied to the image, ϵ for FGSM and αw for Noise.

PASCAL-VOC

Method OpenImages COCO
AUROC↑ FPR95↓ AUROC↑ FPR95↓

VOS 85.23±0.6 51.33±1.6 88.70±1.2 47.53±2.9
SAFE (Noise) 90.22±0.5 24.36±0.9 79.86±0.1 50.00±0.6
SAFE (FGSM) 92.28±1.0 20.06±2.3 80.30±2.4 47.40±3.8

BDD100K

Method OpenImages COCO
AUROC↑ FPR95↓ AUROC↑ FPR95↓

VOS 88.52±1.3 35.54±1.7 86.87±2.1 44.27±2.0
SAFE (Noise) 94.10±0.2 19.58±0.5 88.36±0.4 35.60±0.8
SAFE (FGSM) 94.64±0.3 16.04±0.5 88.96±0.6 32.56±0.8

Supplementary Table 2: Comparison of the performance
of SAFE utilising either an additive noise transformation
(Noise) or adversarial perturbation function (FGSM) against
the previous state-of-the-art (VOS) with the ResNet-50 back-
bone. Comparison metrics are AUROC and FPR95. Direc-
tional arrows indicate if higher ↑ or lower ↓ indicates better
performance. Best results are in red and bold, second best
results are displayed in orange. SAFE sets a new state-of-
the-art in performance with either transformation.

used. This is important as it enables layers selection a priori
of the OOD data or ID perturbation.

Supplementary Figure 3 provides the same layer-wise
performance ablation as in the manuscript’s Figure 3 for the
additive noise (Noise) transformation. We observe that even
under this distributional shift, the SAFE critical layers are
among the highest performing layers with little variation
in their overall performance. Interestingly, while there are
high-performing non-SAFE layers, many of these layers
experience a performance drop (most notably FPR95) from
the (non-SAFE) high-performing layers when FGSM [6] is

used.
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FPR95, lower is better. Individual lines correspond to the
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Dashed lines correspond to the performance of VOS for the
respective datasets. A region of consistent high performance
for all ID and OOD permutations exists between αw ∈
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FGSM and additive noise indicates that SAFE is robust to
distributional shifts in the MLP surrogate training.

ference on Computer Vision and Pattern Recognition (CVPR),
pages 9235–9244, June 2022. 1, 2

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016. 1

[9] Ivan Krasin et al. OpenImages: A public
dataset for large-scale multi-label and multi-class
image classification. Dataset available from
https://storage.googleapis.com/openimages/web/index.html,
2017. 1

[10] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A
simple unified framework for detecting out-of-distribution
samples and adversarial attacks. In Advances in Neural In-
formation Processing Systems (NeuRIPS), page 7167–7177,
2018. 1, 2

[11] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft COCO: Common Objects in Context. In
Proceedings of the European Conference on Computer Vision
(ECCV), pages 740–755, 2014. 1

F
1
-C

1
F

2
-B

1

F
2
-B

2
F

2
-B

3

F
3
-B

1

F
3
-B

2
F

3
-B

3
F

3
-B

4

F
4
-B

1

F
4
-B

2
F

4
-B

3
F

4
-B

4
F

4
-B

5
F

4
-B

6

F
5
-B

1

F
5
-B

2
F

5
-B

3

F
P

N

0

20

40

60

80

100

A
U

R
O

C
↑

(%
)

Random performance

SAFE fusion

FPN laterals

SAFE layers

No BatchNorm

F
1
-C

1
F

2
-B

1

F
2
-B

2
F

2
-B

3

F
3
-B

1

F
3
-B

2
F

3
-B

3
F

3
-B

4

F
4
-B

1

F
4
-B

2
F

4
-B

3
F

4
-B

4
F

4
-B

5
F

4
-B

6

F
5
-B

1

F
5
-B

2
F

5
-B

3

F
P

N

0

20

40

60

80

100

F
P

R
95
↓

(%
)

Supplementary Figure 3: OOD detection performance of in-
dividual Conv2d layers in the standard ResNet-50 backbone
when PASCAL-VOC is the ID set and the surrogate MLP
training task uses an additive noise transformation. Top:
Comparison metric is AUROC, higher is better. Bottom:
Comparison metric is FPR95, lower is better. Results are
reported as averages over both OOD datasets. Layers in
blue with a star are the identified critical layers for SAFE.
Striped layers belong to the Feature Pyramid Network (FPN)
and are the only Conv2d layers that do not have BatchNorm
applied immediately after. The SAFE layers are consistently
among the highest performing even under the effects of a
distributional shift in the synthetic outliers.
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