
Appendix for AccFlow: Backward Accumulation for Long-Range Optical Flow

A. Implementation Details
In Section 3.3 and Figure 4 of the manuscript, we in-

troduced the Motion Encoder, Motion Decoder, adaptive
blending, and getOcc modules used in our proposed Ac-
cFlow framework. Due to the page limitation, we provide
implementation details of these modules in this Appendix.

As shown in Figure A, the Motion Encoder and Motion
Decoder used in AccPlus are implemented where ‘Conv
k × k (c)’ represents a convolutional layer with kernel size
k × k and output channel c, and ‘ReLU’ stands for the ac-
tivation function. In the Motion Encoder, the input optical
flow of size w × h× 2 first undergoes bilinear sampling to
spatially downscale the flow in the ‘DownsampleX4’ layer,
followed by a set of convolutional layers that produce the
motion feature of size w/8×h/8× 128. In the Motion De-
coder, the optical flow is inferred in parallel from the input
motion feature of size w/8× h/8× 128, following the ap-
proach in RAFT. The left branch in Figure A-(b) produces
a optical flow of size w/8×h/8× 2, while the right branch
produces a weighting mask of size w/8 × h/8 × 144. The
convex upsampler is used to upscale the optical flow by 8×
using the adaptive weighting mask (with kernel size 3 × 3)
from the left branch.

The detailed implementation of adaptive blending mod-
ule is presented in Figure B. The frames IN and It−1 are en-
coded to context features CN and Ct−1, which have a 1/4
spatial size of the frame. The initialized long-range motion
feature f ini

t−1,N is mapped to pixel offsets for deformable
convolution, which aligns the context feature CN to C̃t−1

N .
Afterwards, the L1 difference |CN −C̃t−1

N | generates an at-
tention mask m ∈ Rh/8×w/8×1, which adaptive determines
how the prior feature f ini

t−1,N rectifies the accumulated error
in ft−1,N .

In our current AccFlow framework, we implement the
getOcc function by using a threshold to generate the oc-
clusion mask. Specifically, given the optical flow Fi,k, we
backward warp frame Ik to generate Ĩik, Afterwards, the L1
difference between Ii and Ĩik is obtained as follows:

e = |Ii − Ĩik|, (1)

where e ∈ Rw×h×3. Subsequently, we obtain the average
error mask along e’s channel dimension and mark the re-

gions where the mean value is greater than 125 as occluded.
Although the aforementioned getOcc implementation may
not accurately classify occluded and visible regions, we
adopt this approach since it is very efficient and can already
provide adequate occlusion estimates for the subsequent oc-
clusion solvers. Finally, we spatially downscale the occlu-
sion mask using nearest-neighbor sampling by 1/8 times.

In Section 4.5, we conduct an ablation study comparing
the forward version of AccFlow, denoted as AccFlow (F.),
with its default backward version. Figure C illustrates the
structure of AccFlow (F.), in which we keep the network
structure and parameter number the same as backward ac-
cumulation but change the input order.
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Figure A: Structure of the Motion Encoder and Decoder in
Section 3.3 (Figure 4) of the manuscript.

B. Supplementary Visual Comparison
In this section, we present additional visual quality com-

parisons to demonstrate the effectiveness of our proposed
method. Specifically, we compare the long-range flow es-
timated from the HS-Sintel dataset in Figure D and E,
and the estimation from our CVO testing sets in Figure F
and Figure G. To ensure fair comparisons, we fine-tune
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Figure B: Structure of the Adaptive Blending in Figure 4 (Section 3.2) of the manuscript.
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Figure C: Illustration of the forward version AccFlow
framework. (a) The AccFlow (F.) framework. Time t in-
creases from 2 to N−1 to obtain the long-range flow F1,N .
(b) The AccPlus (F.) module implements the forward accu-
mulation in feature domain. Compared with Figure 1 of the
manuscript, we only change the input order.

the pretrained RAFT and GMA models on our CVO train-
ing set, denoted as RAFT∗ and GMA∗, respectively. We
also present the results from warm-start (denoted as ‘-w’)
and AccFlow (i.e., Acc+GMA∗). On the HS-Sintel test-
ing dataset, given two distant frames and their ground-truth
long-range optical flow, we present the flow estimation,
the corresponding error maps (with darker areas indicat-

ing less error), and the zoom-in error maps in Figure D
and E. Similarly, we present the visual comparison on our
CVO Clean and Final sets in Figure F and G, respectively.
Our results demonstrate that warm-start improves the per-
formance compared to the direct estimation, while our pro-
posed AccFlow produces more accurate results and outper-
forms other methods by a large margin, especially in the
cases with complex occlusion and small objects with large
motion.

C. Limitation
While our proposed CVO dataset contains challeng-

ing scenes with large motion and occlusion, its appear-
ance and motion patterns may differ from real-world scenes
since it is a synthetic dataset. This limitation may reduce
the generalization of our learned model in real-world sce-
narios. Furthermore, our proposed AccFlow method re-
quires datasets that include ground-truth long-range flows
for training, which limits the direct applicability of our
model to many popular optical flow training datasets that
only provide ground-truth local flows.



Figure D: Visual quality comparisons on HS-Sintel dataset.



Figure E: Visual quality comparisons on HS-Sintel dataset.
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Figure F: Visual quality comparisons on CVO (Clean) testing set.
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Figure G: Visual quality comparisons on CVO (Final) testing set.


