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1. Exploration of binary ViT

Vision Transformer [2] has received widespread atten-
tion in computer vision community due to its amazing per-
formance in recent years. To this end, we further explore
to binarize ViT using ReSTE. Similar to the binarization in
convolutional neural network, we binarize all the attention
and MLP layers expect for the first layer and the last classi-
fication head. We follow the typical setting in ViT training.
For specific, we use ImageNet ILSVRC-2012 [1] dataset
and train the model from scratch. RandomCrop, Ran-
domHorizontalFlip and Normalize strategies are applied for
data pre-processing. We use AdamW optimizer and set the
beginning learning rate equals to 0.001. We apply Cosine
learning late descent schedule in training. Cross entropy is
adopted as the loss function. As for the hyper-parameter
oend, we set oend = 3. We use ViT tiny as backbone and
compare ReSTE with the baseline model DoReFa-Net[5].
The results are shown in Table 1.

Backbone Estimator W/A Top-1(%) Top-5(%)

ViT tiny
FP 32/32 64.50 85.14
DoReFa-Net[5] 1/32 53.05 76.83
ReSTE (ours) 1/32 56.53 79.86

Table 1: Performance in ImageNet dataset with ViT as
backbone. FP is the full-precision version of the backbone.
W/A is the bit width of weights or activations. Best results
are shown in black bold font.

From the table we can observe that ReSTE has excellent
performance, with about 3.48% and 3.03% improvement
over the baseline model DoReFa-Net[5] at Top-1 and Top-5
accuracy, which further validates the effectiveness and wide
applicability of our method. In addition, it can be seen that
the desirable value oend = 3 in binary convolutional neural

* denotes the corresponding author.
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Figure 1: Illustrations of the estimating error indicators
(above), gradient instability indicators (above) and the Top-
1 accuracy (below) with different scales of oend at the setting
of 1W/32A.

network is also applicable in binary ViT architecture, which
shows the robustness of our estimator.

Nevertheless, we can see that binary ViT has a nonneg-
ligible performance degradation comparing with the full-
precision model. The reason is that attention needs dis-
criminate features to produce highly differentiable attention
map, but binarization reduces the representative ability of
features. Exploring more suitable attention block specifi-
cally for binarization is our future work.
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Figure 2: Illustrations of the distributions of the fitting error (left) and the gradients (right) with ResNet20 and VGG small as
backbone.

2. More Analysis about Equilibrium Perspec-
tive

To further demonstrate our equilibrium perspective, we
conduct some additional analysis experiments to reveal it.
We firstly test the estimating error, gradient stability and the
model performance with different scales of oend at the set-
ting of 1W/32A (experiments at the setting of 1W/1A have
been shown in the main body of our paper). The experi-
ments use ResNet-20 as backbone and test on CIFAR-10[3]
dataset.

The results are shown in Fig. 1. From the figures we
can get the similar conclusions as the experiments at the
setting of 1W/1A, which is shown in the main body of our
paper. We can see that the estimating error becomes smaller
and smaller and the gradient instability becomes bigger and
bigger with oend increasing. This observation shows that
we can not reduce the estimating error with no limit since
the gradient stability will decline along with. In addition,
with the change of oend, the model performance increases
first and then decreases, implying that the large gradient in-
stability will harm the model performance, which validates

our claim.
In addition, it can also be seen from the figures that

ReSTE can flexibly adjust the degree of the estimating er-
ror and the gradient stability by easily changing the hyper-
parameter oend, which implies the superiority of our method.
Moreover, the desirable degrees of equilibrium, i.e., the de-
sirable oend to produce high performance, is same with the
settings of 1W/1A, which is shown in the main body of our
paper, further showing the robustness and wide applicability
of ReSTE.

In addition, we also show more visualizations about
the distributions of the fitting error and the gradients with
ResNet-20 and VGG-small as backbone. The experiments
are conducted in CIFAR-10 [3] dataset at the setting of
1W/1A. The results are shown in Fig. 2. The conclusions
are similar to the experiments with ResNet-18 as backbone,
which is shown in the main body of our paper. The peak
values of the estimating error distribution become smaller,
but the gradients become more divergent, which harms the
model training and increases the risk of gradient vanish-
ing or exploding. This visualization further demonstrate the
equilibrium phenomenon and validates the necessity to bal-



ance it.

3. Model Design Experiments
In model design experiments, we firstly conduct ex-

periments about two different adjusting strategies of o in
ReSTE, the fixed strategy and the progressive strategy,
which is proposed in [4]. For fixed strategy, we test dif-
ferent scales of o, and about the progressive strategy we try
different values of oend. Experiments are conducted with
ResNet-20 as backbone in CIFAR-10 [3] dataset, at the set-
ting of 1W/1A. All the results are demonstrated in Table 3.
From the table we can observe that the progressive strat-
egy is better than the fixed strategy, since the progressive
strategy allows sufficient updating at the beginning and ac-
curate gradients at the end of the training. This can also be
explained by the equilibrium perspective. If we use fixed
strategy, we have divergent gradients at the beginning of the
training, which leads to wrong update directions at the very
beginning and dramatically harms the model training.

Figure 3: Visualizations of different tuning ways of o in the
progressive strategy.

Strategy Acc (%) Strategy Acc (%)

Progressive

oend = 1 85.18

Fixed

o = 1 85.18
oend = 2 86.41 o = 2 85.80
oend = 3 86.75 o = 3 83.19
oend = 4 86.45 o = 4 82.04

Table 2: Model performance of different adjusting strate-
gies of o with ResNet-20 as backbone.

In addition, we also test different tuning ways in the pro-
gressive strategy. In detail, we test cos, exp and linear tun-
ing ways, whose visualizations are shown in Fig. 3. Ex-
periments are conducted with ResNet-20 as backbone in
CIFAR-10 [3] dataset at the setting of 1W/1A. All the re-
sults are demonstrated in Table 3. From the table we can

Strategies Acc(%)

Linear 86.80
Cosine 86.75
Power 86.59

Table 3: Model performance of different tuning ways in the
progressive strategy.

observe that different tuning ways in the progressive strat-
egy have similar performance, showing the robustness of
our method. We simply use cos tuning way in all the exper-
iments in our paper.
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