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Appendix A. More Related Work

Open-world Instance Segmentation. This part supple-
ments the related work in main paper. As is pointed out,
closed-world models treat the un-annotated objects as back-
ground during training and thus can not discover the novel
objects from backdrop during inference. In order to solve
the problem, there have emerged many advanced open-
world works [13, 19, 24, 10, 23, 11] recently.

OLN [13] proposes to replace the classification head
with localization quality head (e.g., IoU head) to predict the
proposal scores. Because it is only trained with positive
samples, OLN would not suppress novel objects as back-
ground. LDET [19] addresses the task from the perspective
of synthesizing images without hidden objects as the train-
ing source. Specifically, LDET proposes a data augmen-
tation named BackErase, which pastes the annotated ob-
jects on a background image sampled from a small region.
In this way, objects and background can be clearly distin-
guished. GGN [24] proposes to solve the problem by ex-
ploiting the pseudo ground-truth of learned pairwise affin-
ity. It first uses the classical grouping algorithms [1, 2, 20]
to generate pseudo masks from pairwise affinity predictor.
Then, Mask-RCNN [8] is trained with the augmented an-
notations. GOOD [10] exploits the geometric cues such
as depth and normals, predicted by the monocular estima-
tors, as the additional training sets. The authors train the
OLN-like proposal network for pseudo-labeling novel ob-
jects from these training source, which shows significant
effectiveness. UDOS [11] combines classical bottom-up
grouping with top-down learning framework. It utilizes the
affinity-based grouping and refinement modules to gather
the part-masks as the robust instance-level segmentations.
OpenInst [23] is a concurrent work that uses the query-
based detector for open-world instance segmentation.

Appendix B. Architecture
B.1. Contrastive Learning

We provide the pseudo-code of contrastive learning in
Algorithm 1. The object center plays the role of query. Pos-
itive and negative samples are from the query embeddings

Algorithm 1 Pseudo-code of Contrastive Learning.

# transformer: the transformer network
# f_q, f_k: contrastive head for query and key
# queue: store the object embeddings, KxC
# m: momentum
# t: temperature

f_q.params = f_k.params # initialize

# load an image and its targets
for image, targets in loader:

# get the query predictions
queries = transformer.forward(image)
q = f_q.forward(queries) # NxC
k = f_k.forward(queries) # NxC

# for each ground-truth object
for target in targets:

queue = queue.detach()
v = mean(queue, dim=0) # object center, 1xC

# positive and negative selection,
# according to Eq.(1) in Appendix
k_pos_id, k_neg_id = SimOTA(queries, target)

k_pos = k.index_select(k_pos_id) # k1xC
k_neg = k.index_select(k_neg_id) # (k2-k1)xC

# positive logits: 1xk1
l_pos = mm(v, k_pos.transpose(0,1))

# negative logits: 1x(k2-k1)
l_neg = mm(v, k_neg.transpose(0,1))

# logits: 1x[k1+(k2-l1)]
logits = cat([l_pos, l_neg], dim=1)

# contrastive loss, Eq.(2) in main paper
labels = cat([ones(k1), zeros(k2-k1)], dim=0)
loss = ContrastiveLoss(logits/t, labels)

# Adam update: transformer and f_k
loss.backward()
update(transformer.params)
update(f_k.params)

# momentum update: f_q
f_q.params = m*f_q.params+(1-m)*f_k.params

# find the best matched queries for ground-truths
query_ids = BipartiteMatch(queries, targets)

# update queue
q_c = q.index_select(query_id)
enqueue(queue, q_c)
dequeue(queue)

mm: matrix multiplication; cat: concatenation.

for each image. The contrastive learning framework is only
used for training and is simply abandoned during inference.
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Figure 1: The pipeline of pseudo ground-truth training. The pretrained SWORD is first adopted to generate the pseudo
boxes/masks. Then the top-scoring predictions are merged with the original annotations. Finally, SWORD† is trained under
the supervision of augmented ground-truths. Note that SWORD† uses exactly the same architecture as Deformable-DETR.

Universal Object Queue. The universal object queue
Q = [q1, q2, ..., qK ] ∈ RK×C stores the object embeddings,
where K is the queue size and C is the channel dimen-
sion of embeddings. The queue is randomly initialized. In
each training iteration, the query embeddings of those pre-
dictions best matching the ground-truths are enqueue and
the oldest ones are dequeue. Notably, these embeddings are
computed by the slowly updated contrastive head fq to en-
sure the stability of universal object queue.

Sample Selection. For contrastive learning, we adopt the
SimOTA [7, 26] strategy to dynamically select the positive
and negative samples according to the matching cost. Given
an image, we compute the matching cost between the i-th
prediction pi and the j-th ground-truth gj as

Cij = λcls · Cij
cls + λL1C

ij
L1 + λgiouC

ij
giou (1)

where λcls, λL1 and λgiou are the coefficients. Cij
cls is Focal

loss [15], and Cij
box is a combination of the L1 loss and gen-

eralized IoU loss [18]. For the ground-truth gj , we sum up
the top 10 IoU values to get k1 and the top 100 IoU values to
get k2. Then, we take the top k1 predictions with the lowest
cost as positive samples. To improve the embedding quality
of negative samples, we choose the top k2 predictions with
the lowest cost and exclude the first k1 ones. The left k2−k1
predictions are the hard negatives. We use the regularly up-
dated contrastive head fk to compute their embeddings and
form the positive set K+ and negative set K−.

B.2. Pseudo Ground-truth Training

Details. The previous work GGN [24] shows that the
pseudo labeling method can greatly boost the performance
of Mask-RCNN in open world. Inspired by this work, we
also develop an extension model, SWORD†, by exploiting
the pseudo ground-truth of SWORD. As shown in Figure 1,
we first use SWORD to generate the pseudo boxes/masks.
Then the top-scoring predictions are merged with the origi-
nal annotations to form the augmented ground-truths, which
plays the role of supervision to train the SWORD†. Note

that SWORD† uses exactly the same architecture as closed-
world model Deformable-DETR [29].

In the pseudo labeling process, we empirically find that
using the IoU scores of SWORD leads to better learning
results. And the merge process directly follows the exist-
ing practice [24]. Specifically, we first set the NMS value
as 0.3 for SWORD to remove most predictions. Consid-
ering that the pseudo labels should focus on covering the
novel objects, we discard those proposals having the box
IoU greater than 0.5 with the annotated objects. Finally, the
top-k predictions are kept as pseudo ground-truths.

Data Augmentation. Data augmentation has been demon-
strated to play an important role in the self-training [27, 12,
30] and semi-supervised methods [21, 16, 28]. Following
[16], we use the random horizontal flip for weak augmen-
tation. And the strong augmentation includes random color
jittering, grayscale, Gaussian blur and random cutout [5].

Appendix C. Implementation Details

Model Details. The model configurations mostly follow
Deformable-DETR [29]. The Transformer has six encoders
and six decoders with the hidden dimension of 256. To en-
sure a high recall, the object query number of SWORD is
set to 2000 when trained on VOC classes and 1000 for all
other settings. For contrastive learning, the size of univer-
sal object queue is set as 4096 and the exponential moving
average (EMA) rate of the momentum contrastive head is
0.999. In the pseudo ground-truth training, SWORD† uses
1000 object queries for all the settings. ResNet-50 [9] is
adopted as the backbone otherwise specified.

Training Details. We use the Adam [14] optimizer with a
base learning rate of 2×10−4 and weight decay of 1×10−4

for model training. All the models are trained on 8 GPUs
with a batch size of 16. We present two models in this work,
SWORD and SWORD†. SWORD is trained for 80k itera-
tions, with the learning rate decaying at the 60k-th itera-
tion. As the VOC classes are partially annotated in COCO



Table 1: Ablation on strong augmentation in pseudo ground-truth training. We evaluate the models in COCO to
UVO and VOC to non-VOC setups. And the results are reported on the novel objects.

Strong Aug.
COCO to UVO VOC to non-VOC

APb ARb
10 ARb

100 APm ARm
10 ARm

100 APb ARb
10 ARb

100 APm ARm
10 ARm

100

✗ 16.0 22.3 49.5 12.1 20.5 42.3 5.6 21.4 38.8 5.2 19.7 33.8
✓ 16.6 22.7 50.0 12.7 20.9 42.8 6.2 22.0 40.0 5.8 20.2 34.9

Table 2: Ablation on the EMA rate. The results are based
on the COCO to UVO setup.

EMA
Novel All

APm ARm
10 ARm

100 APm ARm
10 ARm

100

0.5 8.9 16.3 27.8 16.9 24.4 35.8
0.9 11.3 19.2 37.4 24.3 30.4 47.8
0.99 11.2 19.0 38.5 25.3 30.6 48.9

0.999 12.8 19.4 40.6 28.0 32.4 51.5
0.9999 11.9 18.6 40.7 28.4 32.7 52.0

Table 3: Ablation on the universal object queue size. The
results are based on the VOC(COCO) to UVO setup.

Size
Novel All

APm ARm
10 ARm

100 APm ARm
10 ARm

100

256 4.9 12.4 31.4 17.5 23.8 42.1
1024 5.3 13.2 32.9 18.7 24.9 44.0
4096 6.1 13.3 34.9 19.6 25.3 45.2
8192 5.5 12.6 33.9 19.2 24.9 44.8

dataset, the model tends to overfit to the base classes. So
we train SWORD from scratch when the training source is
VOC. In all other settings, the backbone is initialized with
the ImageNet [4] pretrained weights. For SWORD†, back-
bones always use the ImageNet pretrained weights for in-
tialization. It undergoes 90k iterations of training, with the
learning rate reduced by a factor of 10 at the 60k-th and
80k-th iterations. During training, we resize the input im-
ages such that the shortest side is at least 480 and at most
800, while the longest side is at most 1333. The loss co-
efficients are set as λcls = 2.0, λcls = 2.0, λL1 = 5.0,
λmask = 2.0, λdice = 5.0 and λiou = 1.0, respectively. All
the models use the NMS value of 0.7 during inferene.

Appendix D. Additional Experimental Results

We provide additional experimental results to study the
critical parameters for our method. The ablation studies are
based on the COCO (80 classes) to UVO setup by default.

D.1. Ablation on Contrastive Learning

The Effect of EMA Rate. The momentum update of the
contrastive head can improve the consistency of the univer-
sal object queue. And a larger EMA rate allows the slower
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Figure 2: The effect of top-k in pseudo ground-truth
training. The results are based on mask metrics in COCO
to UVO setup.

feature change. In Table 2, we present the experimental re-
sults with various EMA rate α from 0.5 to 0.9999. As illus-
trated in the first row, with the EMA rate of 0.5, the model
gets relatively low results in both AP and AR metrics. This
indicates that the model suffers from the detrimental effect
of quick transformation of the object center. And the perfor-
mance is greatly boosted with the EMA rate increases, e.g.,
the APb on all objects achieves 6.9% gain by increasing α
from 0.5 to 0.9. We observe that the performance becomes
stable when a larger EMA rate (e.g., α = 0.999) is applied.

The Effect of Universal Object Queue Size. In this study,
we investigate the impact of the universal object queue size
on the VOC(COCO) to UVO setup. Our findings are pre-
sented in Table 3. We observe that when the queue size is
increased from 256 to 4096, the model achieves a perfor-
mance gain of 1.2 APm and 2.1 APm for novel and all ob-
jects, respectively. This improvement in performance may
be attributed to the increased stability of the object center,
which ensures that the object center captures the common
characteristic of objects. However, we observe a decline in
performance with further increases in the queue size, pos-
sibly due to the adverse effects of older object features on
contrastive learning.



Table 4: Ablation on the query number. The results are
based on COCO to UVO setup. Our default settings are
marked in gray .

Query
Novel All

APm ARm
10 ARm

100 APm ARm
10 ARm

100

Deformable-DETR
300 8.9 16.1 37.1 24.4 29.8 49.7
1000 9.0 16.7 37.9 24.7 30.1 50.3
2000 8.6 15.8 37.9 24.7 30.0 50.3

SWORD
300 11.2 18.6 34.4 27.4 32.4 46.3
1000 12.8 19.4 40.6 28.0 32.4 51.5
2000 12.7 19.7 42.7 28.3 32.8 53.0

D.2. Ablation on Pseudo Ground-truth Training

The Effect of Strong Augmentation. To validate the ef-
fectiveness of strong augmentation in pseudo ground-truth
training, we ablate the experiments in COCO to UVO and
VOC to non-VOC settings, respectively. By comparing the
two rows in Table 1, it is observed that the model could
obtain better performance with the help of strong augmenta-
tion. Besides, we observe that the benefit of strong augmen-
tation is more clear in VOC to non-VOC setup than COCO
to UVO setup. The reason may attribute to the fact that
the annotation density and class number of PASCAL-VOC
are more limited, which requires the strong augmentation to
generate more diverse training samples.

The Effect of Pseudo Ground-truth Number. The usage
of pseudo ground-truth helps the closed-world models dis-
cover the novel objects. However, it also introduces noisy
supervision signals. To study the relationship between the
model behavior and the number of pseudo ground-truth, we
vary the number of k for selecting the top-scoring predic-
tions and plot the results in Figure 2. Here, we have the crit-
ical finding: More pseudo ground-truths benefit AR while
hurting AP. It can be seen that ARs keep improving with
the increase of k, while AP for all objects consistently de-
grades. AP for novel objects also starts decreasing when
k reaches a large value (e.g., k = 10). This is reasonable
because more pseudo ground-truths will induce many false
positive predictions. The results suggest that the value of
top-k should be carefully chosen to achieve the optimal bal-
ance between APs and ARs.

D.3. More Ablation Studies

The Effect of Query Number. We study the effect of
query number for both Deformable-DETR and proposed
SWORD in Table 4. The results show that Deformable-

Table 5: Ablation on the backbones. The results are based
on COCO to UVO setup.

Backbone
Novel All

APm ARm
10 ARm

100 APm ARm
10 ARm

100

R50 12.8 19.5 40.6 28.0 32.4 51.5
R101 12.6 19.9 41.3 29.5 33.4 52.7

Swin-T 12.2 19.5 40.8 29.4 33.4 52.0
Swin-L 13.5 20.5 41.2 34.3 37.0 54.1

Table 6: Ablation on the pseudo-label training for differ-
ent models. ‘w/ PL’ represents the model is trained with
the pseudo labels generated from the proposed SWORD.
‘D-DETR’ denotes Deformable-DETR.

Method w/ PL
VOC to non-VOC COCO to UVO

APm ARm
10 ARm

100 APm ARm
10 ARm

100

D-DETR - 2.2 10.2 22.7 9.0 16.7 37.4
D-DETR ✓ 5.8 20.2 34.9 12.7 20.9 42.8
SWORD - 4.8 15.7 30.2 12.8 19.4 40.6
SWORD ✓ 5.9 20.9 36.2 13.3 21.4 43.5

DETR achieves a slight improvement in performance when
the object query number is increased from 300 to 1000.
However, the performance saturates at a query number of
1000, indicating that 1000 queries represent the upper limit
for closed-world models to locate all objects in this open-
world setup. In contrast, our proposed SWORD consis-
tently achieves higher average recalls (ARs) as the query
number increases. This performance profits can be at-
tributed to the stop-grad operation, which prevents the
suppression of novel objects and enables the network to
discover them more effectively. It is worth noting that we
use the same query number for both Deformable-DETR and
SWORD in all experiments for fair comparisons.

Do Stronger Backbones Benefit in Open-world? There
exists the consensus that stronger backbones [9, 6, 25, 17,
22, 3] could greatly increase the performance under the
fully-supervised setup. Of particular interest, we examine
with ResNet [9] and Swin-Transformer [17] to study the
effect of using strong backbones in open-world scenario.
Table 5 illustrates that model consistently performs better
with increasing the size of backbones. Interestingly, we
also observe that out-of-domain objects gets less benefit
from stronger backbone than in-domain objects in the open-
world. For example, by switching the backbone from Swin-
Tiny to Swin-Large, the model enjoys the significant 4.9%
APm gain for all objects while the advance is marginal for
novel objects (+1.3% APm).

Ablation on the Pseudo Ground-truth Training for Dif-
ferent Models. We conduct the experiments using pseudo
labels to train the proposed SWORD and display the re-
sults in Table 6. We report the results on novel objects for
both cross-category (VOC to non-VOC) and cross-dataset



(COCO to UVO) generalizations. It is observed that the
inclusion of pseudo-label training can further enhance the
performance of SWORD, which also surpasses the results
by using the standard Deformable-DETR for pseudo-label
training. This highlights the strong ability of SWORD in
discovering novel objects in the open-world scenario, prov-
ing the necessity of our designs.

Appendix E. Visualization

We visualize more examples in Figure 3. We demon-
strate the superiority of proposed model in diverse scenes.
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(a) Deformable-DETR (b) OLN (c) SWORD† (d) Ground-truth

Figure 3: Visualization examples in VOC to non-VOC setting. All the models are trained on the 20 PASCAL-VOC classes
of COCO dataset. The score thresholds for visualization are set as 0.45, 0.65 and 0.45 for Deformable-DETR [29], OLN [13]
and SWORD†, respectively. It is observed that Deformable-DETR is unable to segment the novel objects and OLN produces
many false positive predictions. Our model obviously provides the accurate and exhaustive segmentation masks.
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