Supplementary Material: Factorized Inverse Path Tracing
for Efficient and Accurate Material-Lighting Estimation
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Figure 1: Qualitative comparison of different input encod-
ing shows a hash grid can better model the detailed texture
on the floor.
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Figure 2: Fusing segmentation on raw images onto the
mesh produces multi-view consistent segmentation.

Supplementary Material Overview

In Sec. A, we provide the details of our pipeline imple-
mentation and data pre-processing.

In Sec. B, we present additional details of our exper-
iments, including: (1) the setup of real world scenes
(Sec. B.1); (2) detailed ablation study (Sec. B.2); (2) addi-
tional results (Sec. B.3); and (4) the schemes for evaluating
the baselines (Sec. B.4).

A. Implementation Details

We implement our method in PyTorch [12] and Mitsuba
3 [5]. The diffuse and specular shadings in Eq. 6 are path-
traced and denoised by the OptiX denoiser [ 1 1], where we
use 128 samples per pixel for diffuse shadings and 64 for
specular shadings. Importance sampling of the BRDF is
applied for shading initialization (stage 1), and multiple
importance sampling is applied for shading refinement (stage
3). For each round of BRDF-emission mask estimation
(stage 2), the optimization is run over the entire training set
for 2 epochs using Adam [6] optimizer with a learning rate
of 1e-3 and a batch size of §,192. Stage 2 and 3 are repeated
twice after stage 1, and all the experiments are run on a
single 3090Ti GPU.

Network architecture. The BRDF network MLPy,4¢ has
2 hidden layers of size 64, and its hash encoding [10] has 32
levels and 19 log, hash map size with other parameters set

to their recommended defaults. For emission mask network
MLP,,it, we use positional encoding [9] with 10 frequency
bands, 6 hidden layers of size 128, and one residual connec-
tion in the middle. Hash encoding is preferred for the BRDF
network as albedo usually demonstrates high frequency pat-
tern, which can be more efficiently modeled by a hash grid
(Fig. 1). Both networks use ReLU activation between the
intermediate layers.

Semantic segmentation acquisition. To obtain semantic
segmentation, we use Mask2Former [3] pre-trained on the
COCO dataset [8] with Swin-L backbone. The input images
are firstly tone-mapped with v = 1/2.2 then clipped to be in
the range [0, 1]. Given segmentation from multi-view images,
we fuse them onto the mesh and let each mesh triangle take
the segmentation ID with the maximum occurrence (Fig. 2).

Geometry acquisition with MonoSDF [17]. We adapt the
original code from MonoSDF in the default configuration for
ScanNet with Multi-Resolutional Feature Grids architecture
and the following changes: (1) instead of having all rays
coming from one image in each training iteration, we ran-
domly sample over all training pixels, which is empirically
found to yield more stable convergence on noisy inputs es-
pecially for real world images; (2) input images are changed
from SDR to HDR to be in the same format as our model
input; accordingly, output activation of MLP is changed to
ReLU, and re-rendering loss is changed to L1 loss on tone-
mapped outputs and labels. Considering MonoSDF does
not incorporate an outlier rejection algorithm, we employ a
two-step training strategy to deal with the bad camera poses.
We first train for one epoch to acquire a rough mesh and
reproject the mesh onto all frames. Frames with significant
misalignment are then rejected and the model is re-trained.
To extract the mesh, we employ Marching Cubes with a grid
size of 512. In total, the entire process takes around 1 day
per-scene.

B. Experiment Details
B.1. Real world scene capture and relighting

Need for acquiring new real world data. Existing
datasets that provide multi-view HDR images and camera
poses of real world scenes may include: Replica [14] , Mat-
terport3D [2], and sample scenes from FVP [13]. However,
each dataset has their own limitations that prohibit usage
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Figure 3: The capture setting (left) and observations of the real world scenes (middle and right). We present two real
world scenes (Conference room and Classroom) with samples of captured images, reconstructed geometries in 3 views, and

all camera poses.

in our evaluation. Specifically, HDR images from FVP do
not employ exposure bracketing, which results in overex-
posed emission that is not applicable to our physically-based
light transport modeling. HDR images from Replica are not
publicly available, thus view-dependent effects cannot be
observed. For Matterport3D, the captured images exhibit arti-
facts including camera glare and problematic tone-mapping.

Therefore, we capture a few scenes as proof of concept
of our method, including a conference room scene presented
in the main paper and an additional classroom scene. Fig. 3
demonstrates our capture setting. We mount a Sony A7M3
full-frame camera on a tripod and use a remote control shut-
ter release to capture images with exposure bracketing of
5 steps 1EV each or 5 steps 2EV each depending on the
dynamic range of the room. We take images from multi-
ple locations of the room, starting roughly with a direction
towards the room center, then randomizing yaw angles be-
tween —60° to 60°, pitch angles between —45° to 45°, with
minimal roll. The camera height is sampled between 0.5m
to 2.5m. For HDR reconstruction, we process the captured
RAW images with black level subtraction, demosaicing, de-
vignetting, and undistortion. The recovered images are as-
sumed to follow linear camera response and are combined
using a hat function similar to Debevec et al. [4].

Reference relighting of Classroom. As is shown in Fig. 4,
lights in the Classroom can be switched between front and
rear light modes. We choose the rear lights as original light-
ing for the main capture, and take a few additional photos
with only front lights on as reference for relighting. Given
BRDF-emission estimation from the main capture, we re-
light the scene by turning the estimated emission off and
insert simple novel emitters to roughly match the front lights
in their actual locations (see demonstration in Fig. 4, bot-
tom). Considering it is not possible to have the manually
inserted novel emitters to perfectly match the actual complex
front lights, we treat the reference relighting photos only as
pseudo-ground truth.

B.2. Ablation study details

Fig. 5 shows the effect of different training strategies
on BRDF-emission estimation as discussed in Sec. 5.4. To
demonstrate the impact of noisy inputs, Fig. 6 shows the qual-
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Figure 4: Relighting of the Classroom scene. The upper
figure shows (1) the lighting for main captures with only back
lights turned on, and (2) the relit scene with only front lights
on (as reference for our relighting experiments). The lower
figure shows our inserted area emitters as approximation of
the actual front lights.

ity of estimated geometry and semantic segmentation with
respect to their ground truth together with the corresponding
reconstruction results. It can be seen that surface roughness
for regions with weak highlights can be very sensitive to
inputs, while emission and material reflectance estimation
are robust as long as the noise stays in a reasonable range.

Failure cases. As discussed in the limitation section
(Sec. 6), broken geometry can lead to large artifacts in our
BRDF-emission reconstruction. A dormitory scene capture
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Figure 5: Qualitative comparison of different training
strategies shows all of the strategies are necessary for effi-
cient and accurate BRDF-emission estimation. The insets
are the ground truth.
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Figure 6: Sensitivity analysis on training inputs. Imperfect
geometry and the usage of semantic segmentation instead of
fine-grained part segmentation (row 1-2) can be acceptable
for our BRDF-emission estimation (row 3-4, column 1-2).
Ambiguity in roughness increases as geometry is imperfect
or coarser segmentation is used (row 3-4, column 2), but
they do not significantly affect applications like relighting
(row 3-4, column 4).

is shown in Fig. 7 to demonstrate the problem, where the
front face of the reconstructed wall cabinet fails to align
with the actual geometry (because of insufficient view cov-
erage), causing the shadow boundary to be baked into the
reflectance map. Meanwhile, geometry of the lamp on the
ceiling fan is partly missing, which causes the emission to
be incorrectly projected to the background wall and cabinet
surface, creating bright artifacts on the reflectance map and
phantom emitters on the wall.

B.3. Additional results

In Fig. 8, 9, we show the per-scene qualitative comparison
of estimated BRDF and emission for all methods on synthetic
dataset, and we compare the view synthesis and relighting
results in Fig. 10, 11. In Fig. 12 and Fig. 13, we provide
evaluation on additional views of our real world captures.
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Figure 7: Failure cases of our method due to bad geome-
try. Top: indented cupboard (actual boundary in blue; esti-
mated in green which has a geometry error of around 1 inch)
results in incorrect light-surface intersection and boundary
artifacts on the diffuse reflectance map (circled). Bottom:
emission and bright artifacts (for diffuse reflectance) get erro-
neously baked onto the wall and cupboard (circled) because
of the missing geometry on the lamp.

B.4. Evaluation scheme of baseline methods

For FVP [13], We use its original code with the following
adaptations: FVP relies on thresholding RGB values to lo-
cate emitters, so we pick the threshold that separates emitters
from the rest of the scene in our images. It also involves
a step to manually set the exposure of each overexposed



emitter, which in our adaptation is provided as the median
radiance within each emitter. In relighting, FVP assumes the
maximum radiance of novel emitters to be 1 so as to yield
shading in SDR for input into its network. Afterwards, the
exposure of novel emitters can be set to arbitrary numbers in
FVP’s GUI. We follow the strategy but set exposure as our
desired radiance values for novel emitters, so that relighting
results from FVP can be directly comparable.

For evaluation of IPT [1] and MILO [16], since their code
is not available, and a re-implementation requires careful
design choices, we depend on results provided by the authors
of MILO and IPT on our data, where it was possible for
them to evaluate. Because MILO and FVP use texture-based
representations, geometry is remeshed to prevent artifacts
like UV seam and bleeding, which gives equivalent quality
in most of the cases except for thin structures like disks on
the kitchen table.

For Li22 [7], instead of using predicted depth, we directly
back-project ground truth geometry to obtain a depth image
as its input. On real scenes, considering the method is based
on single-view input and does not allow rerendering to novel
views under different lighting, we directly feed the reference
relighting image as the input, replace all estimated emitters
by our novel eimtters (Sec. B.1), and re-render the scene
with estimated materials using its neural rendering pipeline.
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Figure 8: BRDF and emission estimation on synthetic Kitchen and Bathroom for all methods. Input views are shown in
the upper-right corner of each scene.
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Figure 9: BRDF and emission estimation results on synthetic Bedroom and Livingroom for all methods, showing 2 views
per-scene. Input views are shown in the upper-right corner of each scene.
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Figure 10: View synthesis results on synthetic scenes for all methods, showing 2 views per-scene.
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Figure 11: Relighting results on synthetic scenes for all methods, showing 2 views per-scene.

Livingroom

-
- :

Conference room Classroom
MILO [16] Li22 [7] FIPT (Ours) MILO [16] Li22 [7] FIPT (Ours) Reference

Figure 12: BRDF and emission estimation on real scenes, showing 1 additional view per-scene besides views shown in the
main paper.
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Figure 13: Rerendering and relighting on real scenes, showing 1 additional view per-scene for each task besides views
shown in the main paper. Top two rows show the rerendering with original lighting (Conference room: all ceiling lamps on;
Classroom: rear lights on and fronts lights off). Bottom two rows show the relighting under novel light with relit Classroom
also included as pseudo-ground truth (with rear lights off, and front lights on).



