HSR-Diff: Hyperspectral Image Super-Resolution via Conditional Diffusion Models Supplementary Material

Chanyue Wu^{1*}, Dong Wang^{1*}, Yunpeng Bai^{2*}, Hanyu Mao¹, Ying Li^{1†}, Qiang Shen² ¹National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, Shaanxi Provincial Key Laboratory of Speech & Image Information Processing, School of Computer Science, Northwestern Polytechnical University, China ²Department of Computer Science, Faculty of Business and Physical Sciences, Aberystwyth University, U.K.

$\label{eq:chanyuewu, dongwang, maomhy} @mail.nwpu.edu.cn lybyp@nwpu.edu.cn {yub3, qqs}@aber.ac.uk \\$

1. Results of \times 8 and $\times 16$ Experiments

Methods	PSNR \uparrow	SSIM \uparrow	$SAM \downarrow$	$ERGAS \downarrow$
UTV-TD [5]	47.43	0.9986	1.47	1.081
UAL [6]	49.71	0.9995	0.95	0.546
BRResNet [2]	52.70	0.9996	1.10	0.441
CMHF-Net [4]	49.73	0.9996	0.99	0.406
Fusformer [1]	50.99	0.9995	0.97	0.374
UAL-DMI [3]	53.10	0.9997	0.67	0.346
HSR-Diff	54.22	0.9998	0.57	0.286

Table 1: Averaged PSNR, SSIM, SAM, and ERGAS of compared methods on Chikusei (the upscaling factor is 8). The \uparrow or \downarrow indicates higher or lower values corresponding to better results.

Methods	$PSNR\uparrow$	$\text{SSIM} \uparrow$	$SAM \downarrow$	ERGAS \downarrow
UTV-TD [5]	46.38	0.9963	1.68	0.854
UAL [6]	49.52	0.9995	0.96	0.318
BRResNet [2]	51.69	0.9996	1.11	0.221
CMHF-Net [4]	48.33	0.9995	1.13	0.282
Fusformer [1]	50.55	0.9994	1.05	0.223
UAL-DMI [3]	52.37	0.9996	0.72	0.235
HSR-Diff	53.71	0.9998	0.63	0.193

Table 2: Averaged PSNR, SSIM, SAM, and ERGAS of compared methods on Chikusei (the upscaling factor is 16). The \uparrow or \downarrow indicates higher or lower values corresponding to better results.

2. Visual Quality Comparison

Figure 1: Visual quality comparison (residual heatmaps) for fused HSIs of all competing methods on the *thread spools* image of CAVE.

^{*}Equal contribution

[†]Corresponding author.

References

- [1] Jin-Fan Hu, Ting-Zhu Huang, Liang-Jian Deng, Hong-Xia Dou, Danfeng Hong, and Gemine Vivone. Fusformer: A transformer-based fusion network for hyperspectral image super-resolution. *IEEE Geoscience and Remote Sensing Letters*, 19:1–5, 2022. 1
- Zi-Rong Jin, Liang-Jian Deng, Tian-Jing Zhang, and Xiao-Xu Jin. Bam: Bilateral activation mechanism for image fusion. In *Proceedings of the 29th ACM International Conference on Multimedia*, pages 4315–4323, 2021.
- [3] Xiuheng Wang, Jie Chen, and Cédric Richard. Hyperspectral image super-resolution with deep priors and degradation model inversion. In *ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 2814–2818. IEEE, 2022. 1
- [4] Qi Xie, Minghao Zhou, Qian Zhao, Zongben Xu, and Deyu Meng. Mhf-net: An interpretable deep network for multispectral and hyperspectral image fusion. *IEEE Transactions* on Pattern Analysis and Machine Intelligence, 2022. 1
- [5] Ting Xu, Ting-Zhu Huang, Liang-Jian Deng, Xi-Le Zhao, and Jie Huang. Hyperspectral image superresolution using unidirectional total variation with tucker decomposition. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 13:4381–4398, 2020. 1
- [6] Lei Zhang, Jiangtao Nie, Wei Wei, Yanning Zhang, Shengcai Liao, and Ling Shao. Unsupervised adaptation learning for hyperspectral imagery super-resolution. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 3073–3082, 2020. 1