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1. Results of × 8 and ×16 Experiments

Methods PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓
UTV-TD [5] 47.43 0.9986 1.47 1.081
UAL [6] 49.71 0.9995 0.95 0.546
BRResNet [2] 52.70 0.9996 1.10 0.441
CMHF-Net [4] 49.73 0.9996 0.99 0.406
Fusformer [1] 50.99 0.9995 0.97 0.374
UAL-DMI [3] 53.10 0.9997 0.67 0.346
HSR-Diff 54.22 0.9998 0.57 0.286

Table 1: Averaged PSNR, SSIM, SAM, and ERGAS of
compared methods on Chikusei (the upscaling factor is 8).
The ↑ or ↓ indicates higher or lower values corresponding
to better results.

Methods PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓
UTV-TD [5] 46.38 0.9963 1.68 0.854
UAL [6] 49.52 0.9995 0.96 0.318
BRResNet [2] 51.69 0.9996 1.11 0.221
CMHF-Net [4] 48.33 0.9995 1.13 0.282
Fusformer [1] 50.55 0.9994 1.05 0.223
UAL-DMI [3] 52.37 0.9996 0.72 0.235
HSR-Diff 53.71 0.9998 0.63 0.193

Table 2: Averaged PSNR, SSIM, SAM, and ERGAS of
compared methods on Chikusei (the upscaling factor is 16).
The ↑ or ↓ indicates higher or lower values corresponding
to better results.

*Equal contribution
†Corresponding author.

2. Visual Quality Comparison
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Figure 1: Visual quality comparison (residual heatmaps) for
fused HSIs of all competing methods on the thread spools
image of CAVE.
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