
Appendix

Table of Content

A. Additional Results

A.1. Effect of Pseudo-labeling Threshold 11
A.2. Effect of RPN Loss in Pseudo Training . . . 11
A.3. Effect of Pseudo Loss Weights 11
A.4. Effect of Data Augmentation 11
A.5. Design Decisions on External Replay Buffer 11
A.6. Analysis of Unlabeled Frames Selection . . . 12
A.7. Visualization of Pseudo-labeling 12

B. Limitations and Future Work.

A. Additional Results

A.1. Effect of Pseudo-labeling Threshold

As mentioned in Section 3.2 we apply confidence thresh-
olding to remove predicted bounding boxes that have low
confidence scores. To show the effectiveness of threshold-
ing, we varied the confidence threshold ⌧ from 0.1 to 0.9
(see Table S1). We observed that the model using a high
threshold (e.g., 0.7) yields satisfactory results, as it produces
more reliable pseudo-labels with high confidence. On the
other hand, using a low threshold can result in lower perfor-
mance since the model generates too many bounding boxes,
which are likely to be false positives.

⌧ 0.1 0.3 0.5 0.6 0.7 0.8 0.9
FAP (") 30.33 31.16 32.17 32.54 33.92 32.81 32.07
CAP (") 21.45 21.67 22.38 22.51 23.04 22.69 22.70

F (#) -7.11 -7.29 -6.88 -6.98 -7.71 -6.60 -6.94

Table S1. Ablation study of varying confidence threshold ⌧ on

OAK dataset at annotation cost 12.5%.

A.2. Effect of RPN Loss in Pseudo Training

In Section 3.2, we mentioned that pseudo losses are only
applied at the ROI module but not at the RPN module. As
shown in Table S2, the model with and without RPN loss in
training pseudo-labeled frames show similar performance.
We assumed that the RPN module is less likely to suffer
catastrophic forgetting since its primary function is to pro-
duce general proposals that are class agnostic. As a result,
we removed the RPN loss during pseudo training, which
also reduces the overall computational cost.

RPN Loss FAP (") CAP (") F (#)
7 33.92 23.04 -7.71

3 33.64 22.68 -7.62

Table S2. Effect of RPN loss in pseudo training on OAK dataset

at annotation cost 12.5%.

A.3. Effect of Pseudo Loss Weights

As mentioned in Section 3.2, �pseudo is a hyperparame-
ter balancing the importance of supervised loss (Lsup) and
pseudo loss (Lpseudo). To examine the effect of �pseudo,
we varied the �pseudo from 0.5 to 4.0 at annotation cost
12.5% on OAK dataset. As shown in Table S3, the model
performs the best with �pseudo = 1.0 and shows moder-
ate performance drop for other values of �pseudo (0.5, 1.5,
and 2.0). However, when �pseudo is set to 4.0, the model
performance deteriorates.

�pseudo 0.5 1.0 1.5 2.0 4.0
FAP (") 33.19 33.92 33.01 32.67 30.08
CAP (") 22.92 23.04 22.52 22.02 20.17

F (#) -6.55 -7.71 -7.71 -7.86 -7.50

Table S3. Ablation study of varying pseudo loss weights �pseudo

on OAK dataset at annotation cost 12.5%.

A.4. Effect of Data Augmentation

As mentioned in 3.2, we use data augmentation tech-
niques when training the pseudo-labeled frames. Here we
ablated our Efficient-CLS by removing data augmentation
in pseudo training. From Table S4 at annotation cost 12.5%,
we observed that removing data augmentation in pseudo
training leads to a performance drop of 3.60% in FAP,
1.96% in CAP and 1.21% in F on OAK dataset. This
indicates that using data augmentation on pseudo-labeled
frames can enforce the model to learn invariant object rep-
resentations from these video frames.

Data Augmentation FAP (") CAP (") F (#)
7 30.32 21.08 -6.50
3 33.92 23.04 -7.71

Table S4. Effect of data augmentation in pseudo training on

OAK dataset at annotation cost 12.5%.

A.5. Design Decisions on External Replay Buffer

First, we explored whether a replay buffer needs to

be balanced based on class distribution in the video

streams. Our current design ensures that there are at least
5 images containing object instances of any given learnt
classes. In comparison, we conducted an additional ex-
periment (Random Store and Replay) where we designed
a replay buffer of the same size as Efficient-CLS and saved
any new images regardless of the class labels. Ideally, this
replay buffer represents the imbalanced class distribution of
the video streams. For example, cars appear more often than
stop signs; thus, it is more likely to store more images con-
taining cars in the replay buffer. In Table S5, we found that
a class balanced replay buffer performs much better than
Random Store and Replay, implying the importance of class
balanced replay buffer.

FAP (") CAP (") F (#)
Random Store and Replay 26.23 21.45 -3.23
Balanced Store and Replay 40.24 28.18 -8.10

Table S5. Effect of class balanced replay buffer on OAK dataset

in fully supervised protocol.

Second, we studied how many frames are needed to

retrieve from the external buffer for replay in conjunc-
tion with the batch of video frames in the current training
iteration (Table S6). To perform episodic replay, we ran-
domly retrieve 16 video frames from the replay buffer for
joint training with current frames of a mini-batch. As shown
in Table S6, replaying 16 video frames is a good trade-off
between model performance and extra training time. Re-
playing fewer samples would lead to poor performance and
forgetting, while replaying more hardly brings any bene-
fits but largely increases the training resources. We com-
pared with the implementation of Wang et al. [34] where
the batch size for replays increases according to the number
of seen classes in each iteration. Table 1 demonstrates the
effectiveness of our replay technique (iCaRL(our impl.) vs.
iCaRL(Wang et al.)).

Replay Size FAP (") CAP (") F (#)

iCaRL (our impl.)

2 14.14 10.62 -0.09
4 21.93 15.26 -0.57
8 34.08 22.20 -4.83
16 36.14 26.26 -4.89

32 37.42 28.28 -3.09
64 35.59 27.81 -1.65

Efficient-CLS

2 18.79 13.37 -2.05
4 25.52 18.22 -4.64
8 37.03 24.32 -8.21
16 40.24 28.18 -8.10

32 41.04 30.01 -7.90
64 38.79 29.92 -7.61

Table S6. Ablation study of the number of replay sample per

training step on OAK dataset in fully supervised protocol. The
buffer size is set to 5 images per class. Our choices are bold-faced.

Third, we studied the effect of the number of sample

images stored per class in the replay buffer. We varied
the number of sample images saved per class. As the num-
ber of sample images per class increases, it increases the di-
versity of the object representations per class; hence leads to
steady performance boost (Table S7). This trend is observed
in both iCaRL and Efficient-CLS. Of course, one could ar-
gue that the ideal case is to store all the past video frames
and replay all of them. This reverts to the offline setting and
yields the best model performance in LEOCOD. However,
it is at the expense of heavy usage of memory storage. In
practice, one has to strike a nice balance between model per-
formance and memory storage. Here, we demonstrate that
even saving 5 images per class, Efficient-CLS surpasses all
the competitive baselines in LEOCOD.

Buffer Size FAP (") CAP (") F (#)

iCaRL (our impl.)

1 28.60 20.60 -2.59
5 36.14 26.26 -4.89

10 39.96 28.37 -6.45
15 40.56 28.84 -6.69
20 41.26 29.16 -7.19
30 42.04 29.57 -7.57
50 43.22 30.21 -7.53

Efficient-CLS

1 31.41 22.50 -6.74
5 40.24 28.18 -8.10

10 43.44 29.96 -8.80
15 44.57 30.17 -8.98
20 45.10 30.36 -8.46
30 45.26 30.87 -9.37
50 46.95 31.33 -9.00

Table S7. Ablation study of varying numbers of samples per

class stored in replay buffer on OAK dataset in fully super-

vised protocol. The replay size is set to 16 images per training
iteration. Our choices are bold-faced.

A.6. Analysis of Unlabeled Frames Selection

We conducted Efficient-CLS with 5 runs. Each run ap-
plies a different random seed for unlabeled frames selection.
We reported the means and standard deviations of these 5
runs in Table S8. We found that our Efficient-CLS shows
reliable and robust performance against different selections
of unlabeled frames in the video stream.

Annotation Cost (%) 50 25 12.5 6.25
FAP (") 38.45 (±0.68) 38.00 (±1.17) 34.29 (±0.76) 30.50 (±1.07)
CAP (") 26.85 (±0.24) 26.38 (±0.32) 23.47 (±0.73) 20.60 (±0.43)

F (#) -8.01 (±0.77) -8.32 (±0.98) -7.30 (±0.82) -6.28 (±0.69)

Table S8. Performance of our Efficient-CLS on OAK dataset

in sparse annotation protocol. The table header denotes the per-
centage of frames that are labeled in the video stream. The means
and standard deviations in brackets are reported.

A.7. Visualization of Pseudo-labeling

As shown in Figure S2, the pseudo-labels generated by
our Efficient-CLS (2nd column) capture more ground truth
objects and contain fewer false positive instances than the
Naive Pseudo-labeling model (1st column).

B. Limitations and Future Work.

Same as other replay methods, our method is facing
with infinite memory expansion problem. Our replay buffer
stores 5 images per object class. As the number of seen
classes increases, the memory buffer has to expand. One
could imagine that this will be a challenging case in life-
long learning on video streams which last for tens of years
and thousands of classes have to be learnt. In the future,
we will explore more efficient replay strategies with latent
object representations.

A) Comparisons of A-GEM (blue) and A-GEM w/ Efficient-CLS (red).

B) Comparisons of GDumb (blue) and GDumb w/ Efficient-CLS (red).

C) Comparisons of DER++ (blue) and DER++ w/ Efficient-CLS (red).

Figure S1. Evaluation of state-of-the-art CL methods in LEOCOD setting on OAK dataset (first row) and EgoObjects dataset

(second row). The higher the bars are, the better. The x-axis denotes the percentage of video frames that are labeled in the video stream.
It ranges from 6.25% to 100% (full supervision). The y-axis indcates the performance using different evaluation metrics.

2XUV1DLYH�3VHXGR�ODEHOLQJ

([DPSOH��

([DPSOH��

([DPSOH��

Figure S2. Visualization of example pseudo-labels predicted by our Efficient-CLS and the Naive Pseudo-labeling. The white box
with dash line denotes the ground truth label. The box with solid line denotes the pseudo-labels (the ones in green are correct while the red
are wrong labels). The Naive Pseudo-labeling only has one learner and uses the pseudo-labels generated by itself for training.

