Supplementary Materials for
Learning Foresightful Dense Visual Affordance
for Deformable Object Manipulation

Ruihai Wu!34*
LCFCS, School of CS, PKU

Chuanruo Ning
2School of EECS, PKU

2,1% 1,3,4%

SBAAI

Hao Dong

“National Key Laboratory for Multimedia Information Processing, School of CS, PKU

Contents

A Additional Details of Tasks, Settings and Metrics
AlTasks
A.2 Simulation
A3 Metricso

O Y

B Additional Details of Experiments
B.1. Data Collection
B.2. Hyper-parameters
B.3. Computing Resources

NSRS I SR 8

(8]

C Additional Details of Network Architectures

D Additional Details of Real-world Experiments

D.2 Real-world Data Collection and Fine-tuning .
D3 Metrics
D.4 Video Records of Real-world Manipulations

W W WMo N

(]

E Assets and Code
E.l.Assets.
E2.Code 3

w

A. Additional Details of Tasks, Settings and
Metrics

A.l. Tasks

We select 2 representative tasks from DeformableRavens
benchmark: cable-ring and cable-ring-notarget, as well as
2 harder tasks from SoftGym: SpreadCloth and RopeCon-
figuration (we use the shape ‘S’ as the target).

* (1) For cable-ring, it has a ring-shaped cable with 32
beads. The goal of the robot is to manipulate the cable
towards a target zone denoted by a green circular ring

*Equal contribution, order determined by coin flip.
Corresponding author

in the observation. The maximum convex hull area of
the cable-ring and the target cable-ring are the same.

* (2) For cable-ring-notarget, the setting is the same as
cable-ring, except that there is no visible target zone
in the observation, so that the goal is to manipulate the
cable to a circular ring anywhere on the workbench.

* (3) For SpreadCloth, we use a square cloth. The cloth
is randomly perturbed to a crumpled state. The goal of
the robot is to manipulate the crumpled cloth into flat
state.

* (4) For RopeConfiguration, the rope is randomly per-
turbed to a crumpled state. The goal of the robot is to
manipulate the rope into the shape of letter ‘S’.

\

4
Cable-ring -Ring-nntnrge(- SpreadCloth - RopeConfiguration

Figure 1. Demonstrations of the selected tasks. Each image
shows an observation and a successful state (the cropped sub-
images to the bottom right).

N

A.2. Simulation

For DeformableRavens benchmark, we use the suite of
simulated manipulation tasks using PyBullet [2] physics en-
gine and OpenAI GYM [!] interfaces. For SoftGym bench-
mark, we use Nvidia FleX physics simulator and the Python
interface for a better simulation of cloth and rope.

A.3. Metrics

For cable-ring and cable-ring-notarget, we follow De-
formableRavens benchmark, when the convex hull area of
the ring beads exceeds a thresh S, the manipulation is

judged as a success. We set 3 to be 0.75 for these two tasks,
as established in DeformableRavens. We use the success
rate as manipulation score, which is number of successful
manipulation trajectories divided by total number of manip-
ulation trajectories.

For the SpreadCloth and RopeConfiguration, follow-
ing SoftGym benchmark, we choose the normalized score
as manipulation score, which is 7:;;:::5 m“’:m‘i"."j“”f”’

goal —MELTICinitial

where metricgina means the score of final state,
metricinitiar means the score of initial state and metricgoar
means the score of target state. Specifically, for Spread-
Cloth, we use the coverage area of cloth as the measure-
ment, and metricgoq is 1.00. For RopeConfiguration, we
use the negative bipartite graph matching distance as the
metric, and metricgoq is —0.04.

During testing, we randomly select 60 (the same number
of trials as in DeformableRavens) random seeds represent-
ing different initial configurations of the objects, conduct
experiments and report manipulation score on these differ-
ent initial states.

)

B. Additional Details of Experiments
B.1. Data Collection

We collect 5,000 interactions in cable-related tasks, and
40000 interactions in SpreadCloth and RopeConfigura-
tion for each step. The training of the SpreadCloth and
RopeConfiguration needs more data, for the reason that,
the states, kinematics and dynamics of these objects are
much more complex.

From a starting state, we collect both successful interac-
tion data using the proposed Fold to Unfold data collection
method, and failure interaction data using a random policy.
Therefore, the trained dense affordance could represent the
distribution of diverse results of diverse actions. Each inter-
action data contains the actions (picking point and placing
point) and results after the action (e.g. cloth coverage area
for SpreadCloth).

B.2. Hyper-parameters

We set batch size to be 20, and use Adam Optimizer [3]
with 0.0001 as the initial learning rate. During Integrated
Systematic Training (IST) procedure, we set learning rate
to be 0.00005, as the affordance modules have been trained
before, and are only adapted and integrated into a system in
this procedure.

B.3. Computing Resources

We use TensorFlow as our Deep Learning framework.
Each experiment is conducted on an RTX 3090 GPU, and
consumes about 20 GB GPU Memory for training. It takes
about 12 hours and 6 hours to respectively train the Plac-
ing Module and the Picking Module for one step. Besides,

the Integrated Systematic Training procedure consumes 6
hours.

C. Additional Details of Network Architec-
tures

The Picking Module and the Placing Module both em-
ploy Fully Convolutional Networks (FCNs) with the same
structure to extract point-level features. Through the FCNs,
the feature of the W x H x C' dimension input sequentially
transforms to W x H x 64, W x H x 64, W/2x H/2x 128,
W/Ax H/4x 256, W/8x H/8x512, W/16 x H/16 x 512
(bottleneck of the net work, where global feature is ex-
tracted), W/8 x H8 x 512, W/8 x H/8 x 256, W/4 x
H/4 x 256, W/4 x H/4 x 128, W/2 x H/2 x 128,
W/2 x H/2 x 256, W x H x 256, W x H x 256.

Afterwards, the Picking Module uses MLPs with hid-
den sizes to be (256—256, 256—1) to predict picking af-
fordance, and the Picking Module uses MLPs with hidden
sizes to be (1024—256, 256—1) to predict placing affor-
dance. Here, 256 denotes the feature dimension of each
(picking or placing) point, and 1024 denotes the dimension
of the concatenation of the picking point feature (256), the
placing point feature (256), and the global feature (512).

D. Additional Details of Real-world Experi-
ments

D.1. Real-robot Settings

For real-robot experiments, we set up one Franka Panda
robot on the workbench, with a RealSense camera mounted
on the robot gripper to take observations. We use Robot
Operating System (ROS) [4] to control the robot to execute
actions.

Additionally, as shown in Figure 2, as the original fingers
of Franka Panda is wide and coarse, to ensure that the grip-
per can pick only one layer of cloth instead of two layers at
a time, we design two fine-grained fingers mounted on the
fingertips of the original fingers.

Figure 2. Our Designed Fine-grained Fingers to better pick de-
formable objects.

D.2. Real-world Data Collection and Fine-tuning

As the configurations, kinematics and dynamics of de-
formable objects (like cloth and ropes) in the real world are
different from those in simulation, we fine-tune the trained-
in-simulation affordance using real-world collected interac-
tions.

Specifically, following Section 4.5 (Fold to Unfold: Ef-
ficient Multi-stage Data Collection for Learning Fore-
sightful Affordance) in the main paper, we collect real-
world interactions using the Fold-to-Unfold method in dif-
ferent stages (demonstrations shown in Figure 3). For fine-
tuning, we tune the learned picking and placing affordance
stage-by-stage using the above real-world collected data.

Figure 3. Demonstrations of real-world collected data. State
0i+1 shows the starting state and state o; show the ending state of
interaction data for training.

D.3. Metrics

For SpreadCloth, we use the same metric as in A.3, as it
is easy to compute the coverage area of the cloth in the real
world. For RopeConfiguration, we mark a black dot on the
rope every 10cm, and compute the distances between these
black dots and their ideal locations as the bipartite graph
matching distance for further evaluation.

D.4. Video Records of Real-world Manipulations

Please see the experiment part of the supplementary
video for video records of real-world manipulations for
both SpreadCloth and RopeConfiguration tasks.

E. Assets and Code
E.1. Assets

We use the cable assets in DeformableRavens bench-
mark as well as cloth and rope assets in SoftGym bench-
mark, following their licenses. Our proposed assets with
novel configurations can be generated using our code.

E.2. Code

Code for SpreadCloth and RopeConfiguration ex-
periments is attached with this supplementary. The
README.md file illustrates the usage of our code.

References

[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.
Openai gym, 2016. 1

[2] Erwin Coumans and Yunfei Bai. Pybullet, a python module
for physics simulation for games, robotics and machine learn-
ing. 2016. 1

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. The 3rd International Conference for
Learning Representations, 2015. 2

[4] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully
Foote, Jeremy Leibs, Rob Wheeler, Andrew Y Ng, et al. Ros:
an open-source robot operating system. In /CRA workshop on
open source software, number 3.2, page 5. Kobe, Japan, 2009.
2

