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In this supplementary material, we will discuss the
occlusion-aware object opacity design in Sec. |A] more im-
plementation details in Sec. [B] the definition of evaluation
metric in Sec. [C] more experimental results in Sec. [D] and
discussion about our framework [El

A. Discussion about occlusion-aware object
opacity

We explore the distinctions between our design and
other existing methods, providing additional details to en-
hance the readers’ comprehension. Scene opacity is de-
fined as Oq(v) = 1 — Tq(v), the probability that a ray
does hit a particle before reaching v, with rigorously de-
rived PDF 2920 () — T (v) o (r(v)) [15L[12]. 1) When
extending to object opacity, a simple way is Op,(r) =
I, To,(v)oo, (r(v))dv, (E1), which however ignores the
occlusions among objects [14, |6]. To model the occlu-
sion between objects, VMAP [6] requires ground truth depth
to determine the integration range in (E'1) and requires a
manual interval shrinkage design in volume rendering [9].
This is also similar to the 3D mask design in Object-
NeRF [[14] 2) ObjectSDF [13]] builds an additional seman-
tic field s and render via [’ T (v)oq(r(v))s(r(v))dv to
handle occlusion. It introduces an extra tuning hyperpa-
rameter for semantic mapping. 3) In contrast, we rethink
the occlusion issue and introduce this design: Op,(r) =
[ Ta(v)oo, (r(v))dv, to approximate both visible and
occluded object opacity. This design removes the depen-
dency on ground truth depth data or additional semantic
mapping and has shown effectiveness in experiments, which
also offers fundamental insights.

B. More Implementation Details

Multi-Resolution Feature Grid Provoked by [8]], we adopt
the multi-resolution feature grid to compensate the fixed
frequency position encoding used in vanilla NeRF [7] to
accelerate the model convergence speed. Concretely, the

3D space will be represented by a L = 16 level of feature
grid with resolution sampled in geometry space to combine
different frequencies features:

In Ryae — In Ryin,
L—-1

where R,,;n = 16, R0 = 2048 are the coarsest and finest
resolitions, respectively. Each grid includes up to T feature
with a dimension of 2. In the coarse level where R; < T,
the feature grid is stored densely. For the finer level where
R; > T, we follow the Instant-NGP [8]] to apply a spatial
hashing function to index the feature vector from the hash-
ing table:

Ry = |Rypinb' |, b := exp( ), (1)

h(z) = (®2_,2;m;)modT 2)

where @ is the bit-wise XOR operation and 7; are unique,
large prime numbers. The size of the feature vector table
T is set as 219 similar to [} [16]. By concatenating the tri-
linear interpolated queried vector from each scale, we ap-
pend it with the vanilla fixed frequency position embedding
of the point coordinates as the input for SDF prediction net-
work [16]].

Geometry initialization for object compositional neural
implicit surfaces To train a model which takes coordinates
position as input and then predicts SDF, a good initialization
could serve an important role in the optimization. A com-
monly used technique is the geometry initialization pro-
posed in [1]]. The key design lies in the initial weight to
create an SDF field of a sphere in 3D space. In our object-
compositional setting, we improve it by manipulating the
bias term in the last layer of MLP to create a different radius
of the sphere for objects and backgrounds. Specifically, we
set the bias term in the channel of common objects as half
of that in the channel of background SDF. This design will
make sure the objects lie inside the background at the be-
ginning of model optimization. We noticed that this could
help in alleviating some object-missing issues during model
training. The default radius set for the background object is
0.6-0.9 to cover the camera trajectory. To make sure the



minimum operation stays meaningful, we set the region in-
side the sphere as positive for the background object SDF
so that it won’t influence the inner object SDF.

Details about Normal and Depth loss As the monocular
depth extracted from pre-trained model [3] is not a metric
depth, MonoSDF adopts a scale-invariant loss [4} [10] by
solving a least-square problem:

(w,q) = arg rlrulin = Z(wﬁ(r) +q—D()* @3
4 reR

Here the D(r), D(r) are the pesudo depth and rendered
depth, respectively. This equation has a closed-form solu-
tion when sampling larger than 2 points. We solved w, ¢ in-
dividually at each iteration for a batch of randomly sampled
rays within a single image. The main reason behind it is the
depth map predicted by the pre-trained model may differ in
scale and shift and the predicted geometry will change at
each iteration. Then the depth loss can be defined as:

[fdepth = Z HU}D(I’) +q- D(I’)H2 (4)
reR

As for the normal loss, we not only force the scale of
the normal vector but also the angle similarity for predicted
normal and pseudo-normal. The predicted normal vector N
can also be obtained from the volume rendering result of the
gradient of the SDF field, similar to depth and RGB color.
The loss can be defined as follow:

Lnormal = Z HN(I‘)_N(r)Hl+||1_N(r)N(r)H17 4)
reR

where N (r), N (r) are the rendered normal and pseudo nor-
mal from OmniData [3]] respectively.

Object Distinction Loss We also provide the idea of the im-
plementation of object distinction regularization loss. Be-
cause we only apply this loss to object SDFs which is not
the minimum value at this point. We first get the SDF vector
d(p) = (do,(P),do,(P),-..,do, (P)), then we use the
minimum operation to get the scene SDF, dq (p). We adopt
a simple trick to eliminate the influence by subtracting the
output of that from the minimum SDF in the loss:

Z ReLU(—do, (p) — da(p))]
do, (p)7da(p)

= Y [ReLU(~do, (p) - da(p))] 6)

i=1,. K
—ReLU(— mind(p) — da(p)),

Due to the minimum operation being differentiable, we are
able to calculate this loss and backpropagate the gradient.

C. Evaluation Metric

We provide the definition of the evaluation metrics we
used in the main document.

Metric Definition

Accuracy meanpep (Mingeq ||p — all1)
Completeness meangeq(minpep |p —all1)
Chamfer-L1 0.5 * (Accuracy + Completeness)
Precision meanpcp (mingeq ||p — qlf1) < 0.05
Recall meangeq(mingep ||p —qlf1) < 0.05
F-score 2 x Precision * Recall/(Precision+Recall)

Table 1. Evaluation Metric Calculation. We provide the equa-
tion for computing the quantitative metric used in the experiment.
Given the sampled point cloud from ground-truth P and predicted
result Q, all the metrics can be calculated as shown above.

D. More Experimental Results
D.1. More Details about Experimental Setting

We use 8 scenes from Replica [[11] following [16} 6] and
4 scenes from ScanNet [2]] following [[L6} S]] for evaluation.
The groud-truth meshes of vMap [6] are from her and
MonoSDF [16] are from hereﬂ vMAP also provides the
ground truth object mesh of Replica dataset. We also eval-
uate our object reconstruction results compared with these
data.

D.2. More results on Replica Dataset

We also provide the variant of ObjectSDF* with distinc-
tion regularization loss in Tab[2] We notice that adding the
object distinction regularization loss into ObjectSDF* can
further improve the quantitative results. However, the se-
mantic field design limits the surface reconstruction qual-
ity, and the quantitative result from ‘ObjSDF w reg’ is still
worse than ‘Ours w/o reg’ on the Replica dataset. It demon-
strates the effectiveness of occlusion-aware object opacity
rendering in improving surface reconstruction quality. We
provide more results in Table.

D.3. More results on ScanNet

We provide more quantitative results of Scannet. The re-
sults of ObjectSDF*, Ours w/o reg, and Ours are provided
in Tab.|3] We found that replacing the semantic field design
with the occlusion-aware object opacity training scheme
could also show superiority in scene reconstruction qual-
ity. The object distinction loss also performs an important
role in further improving the quantitative results and making
them achieve state-of-the-art performance. It suggests that
the combination of object distinction loss and occlusion-
aware object opacity rendering scheme is necessary. Be-
sides that, we also find simpling applying the design of
ObjectSDF* has already improved the result of MonoSDF
(Multi-Res Grid) by a clear margin. It further reassures the

'https://github.com/kxhit/vMAP#results
Zhttps://github.com/autonomousvision/monosdf/
blob/main/scripts/download_meshes.sh


https://github.com/kxhit/vMAP#results
https://github.com/autonomousvision/monosdf/blob/main/scripts/download_meshes.sh
https://github.com/autonomousvision/monosdf/blob/main/scripts/download_meshes.sh

Model Components Scene Reconstruction Object Reconstruction
Method Object Guidance  Mono Cue Regularizer || Chamfer-L1| F-score 1 | Chamfer-L1] F-score 1
ObjSDF ‘ Semantic H 22.8 25.74 ‘ 7.05 59.91
ObjSDF* Semantic v 4.14 78.34 4.65 74.06
ObjSDF* w reg Semantic v v 3.96 80.58 4.18 76.82
Ours w/o reg Occlusion Opacity v 3.60 85.59 3.78 79.51
Ours Occlusion Opacity v v 3.58 85.69 3.74 80.10

Table 2. The quantitative average results from 8 Replica scenes evaluated on scene and object reconstruction. We show more results

of the ablation study.

Accuracy | Completeness | Chamfer-LL1 | Precision? Recall T F-Score T

MonoSDF (Multi-Res Grids) [16] 0.072 0.057 0.064 0.660 0.601 0.626
ObjectSDF* (Multi-Res Grids) 0.065 0.048 0.057 0.661 0.672 0.669
Ours w/o reg (Multi-Res Grids) 0.065 0.045 0.055 0.667 0.704 0.685
Ours (Multi-Res Grids) 0.047 0.045 0.046 0.749 0.707 0.726

Table 3. The quantitative results of the scene reconstruction on ScanNet. We show the ablation results of ObjectSDF++ compared with
multi-resolution grid-based MonoSDF. With the introduction of object-compositional modeling, we found the scene reconstruction quality

can get significant improvement.

ObjectSDF ~ ObjectSDF*  ObjectSDF++
room0  17.96/5.26 2.76/3.40 2.68/3.08
rooml  29.29/8.59 3.94/5.07 3.37/4.66
room2  28.62/6.15 3.30/5.07 3.03/4.02
office0  20.10/7.73 5.72/4.38 6.00/3.14
officel 31.56/11.87 6.67/4.50 4.07/3.79
office2  15.98/5.25 4.47/4.27 3.70/3.62
office3  10.29/5.25 3.35/5.01 3.10/3.88
office4 31.89/10.10  2.75/6.53 2.72/4.03

Table 4. The quantitative results of the Chamfer distance in
individual scenes on Replica, including scene/object.. We
show the individual results from ObjectSDF [13], its variant Ob-
jectSDF* and our framework on different scenes in Replica

benefit of object-compositional modeling in improving sur-
face reconstruction ability.

D.4. Additional Experimental Results

To solve the object compositional representation, one
simple baseline is to reconstruct each object separately and
recombine them together in the final scene. Therefore, we
conducted a simple experiment using the same scene as
Fig.3. The results show that independently learning SDF
from the mask doesn’t correctly give occlusion relation-
ships, resulting in poor reconstruction. Moreover, such a
baseline is laborious if there are many objects in a scene.

Figure 1. Reconstruct Object separately. Left: reference image,
Right: reconstructed desk

E. Limitation about this framework

We improve the quality of ObjectSDF by rethinking
the process of opacity rendering and object collision is-
sues. It still exists some space to further improve it.
Firstly, although we adopt the multi-resolution grid for ac-
celerating the model convergence speed, the main focus
of ObjectSDF++ is not a real-time framework for object-
compositional neural implicit surfaces. The estimated train-
ing time for one scene is still about 16 hours on Pytorch (de-
pending on how many objects are inside the scene) in a sin-
gle GPU. We will explore this direction in the future. Sec-
ondly, the SDF-based representation is suitable for closed
surfaces. It would be better to further extend it to support
some open surfaces such as clothes etc. Thirdly, the under-
line assumption of the density transition function is that all
objects are solid. Therefore, it is also a good direction to ex-
plore whether to represent transparent/semi-transparent ob-
jects in the neural implicit surface framework. We also point
out that the mask used in this work is a temporally consis-



tent mask. Using an online segmentation mask could en-
hance the framework’s applicability but require additional
design for mask association between different frames. We
leave it for our future work.
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