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In Sec. 1 we report additional results on 3D reconstructions, novel view synthesis, the implicit surface optimization
process, scalability, and limitations of our method. In Sec. 2 we describe in further detail our experiment settings. We also
include a supplementary video that compares the results of our method against various baselines.

1. Additional Results
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Figure 1. Additional 3D reconstruction results of neural rendering methods on DTU. Our results appear more complete and accurate.

Additional Results on 3D Reconstructions. We showcase additional meshes extracted from neural rendering methods on
three-view 3D reconstruction for the DTU [1] and BlendedMVS [18] datasets (Fig. 1 and Fig. 2). We provide more point
cloud visualizations of the results when combining our method with different MVS models in Fig. 3 and Fig. 4.
Additional Results on Novel View Synthesis. In Fig. 5 and Fig. 2 we showcase additional qualitative comparisons between
our method and the baselines on novel view synthesis for the DTU and BlendedMVS datasets.
Optimization Process. In Fig. 6, we show an example of how the implicit surface evolves during the optimization process.
Our output surface reconstruction after 10-15 minutes of training (on an NVIDIA A5000 GPU) is already more accurate than
the reconstruction of a fully trained VolSDF [19] (typically 4-10 hours).
Scalability. We conduct an ablation study on the scalability of our method. Fig. 7 and Tab. 1 show that as the input
views become denser, the performance of our method, measured by surface reconstruction and novel view synthesis quality,
improves and is consistently better than CasMVSNet [7] and VolSDF [19]. Tab. 2 shows that, for three given views, the
reconstruction quality of our method remains the same when varying the input image resolution. CasMVSNet [7] and
VolSDF [19] perform worse when lowering the image resolution.
Ablation Study on Different MVS Models. In Tab. 3, we provide an extended ablation study across all three MVS mod-



PSNR ↑ SSIM ↑ LPIPS ↓
3-views 6-views 9-views 3-views 6-views 9-views 3-views 6-views 9-views

VolSDF [19] 16.99 20.19 23.04 0.786 0.823 0.836 0.332 0.317 0.310
Ours 20.21 20.80 22.98 0.820 0.824 0.832 0.321 0.318 0.309
OursIR 20.58 21.48 23.01 0.855 0.872 0.895 0.157 0.145 0.128

Table 1. Quantitative results on novel view synthesis with 3-9 input views on DTU.

Chamfer ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Resolution Low Mid High Low Mid High Low Mid High Low Mid High

CasMVSNet [7] 1.92 1.86 1.87 — — —
VolSDF [19] 2.56 2.80 2.70 16.99 15.52 15.75 0.786 0.771 0.790 0.332 0.352 0.346
Ours 1.32 1.33 1.33 20.21 19.63 19.97 0.820 0.822 0.833 0.321 0.330 0.330
OursIR — 20.58 19.98 20.30 0.855 0.853 0.858 0.157 0.178 0.186
Table 2. Quantitative results with different image resolutions: low (576×768), mid (864×1152), and high (1152×1536), on DTU.

els: TransMVSNet [6], UCSNet [4], and CasMVSNet [7]. It validates the importance of using probability volumes, soft
consistency check, and generalized cross-entropy loss, consistent with our main text’s ablation study findings.

Chamfer (mm)↓ TransMVSNet [6] UCSNet [4] CasMVSNet [7]

MVS Model 2.915 2.201 1.920
MVS + Ours 1.798 1.519 1.320
only soft consistency 2.627 1.901 1.711
MSE loss 2.233 2.019 1.792
w/o prob. volume 2.692 1.791 1.543
w/o GCE loss 2.525 1.702 1.534

Table 3. Ablation study on different MVS models, on DTU.

Additional Comparison with Related Work. In Tab. 4, we provide additional comparisons with regularization based
approach including DS-NeRF [5], which utilizes estimated depth from structure-from-motion [12], and MonoSDF [22],
which [14] utilizes monocular depth estimation. Because their depth priors are either sparse or often not accurate enough,
providing only approximated structures or shapes, their results are worse than ours.

MonoSDF [22] DS-NeRF [5] Ours

Chamfer (mm)↓ 2.141 1.792 1.32
Table 4. Additional comparison with related work, on DTU.

Limitations. While our method is also capable of refining the probability volumes of the finer stages of MVS, we notice that
the benefits diminsh since there is not as much uncertainty in later stages. Our method applied to stages 1, 1,2, and 1,2,3 of
MVS resulted in chamfer distances of 1.320, 1.312, and 1.309, respectively.
Evaluation on Objects with Glossy Material. Although our method may not work well for texture-less or glossy surfaces
due to the introduction of MVS. Surprisingly, as shown in Fig. 8 and Tab. 5, our method still surpasses VolSDF in recon-
structing complex glossy surfaces. We suspect that our noise-tolerant optimization and MVS models operating on features
instead of pixels make our pipeline more robust to specular reflections that violate multi-view consistency. Further research
on this problem would be quite interesting.

2. Experimental Settings

Hyperparameters. We observe a strong over-fitting tendency for VolSDF [19] with sparse input views. This over-fitting is
due to the usage of the view direction to explain object color in different views, and therefore we set the positional encoding
level of view direction to 1 for VolSDF and our method. We use the same loss functions as VolSDF [19], along with our



PSNR ↑ SSIM ↑ LPIPS ↓ MAE◦ ↓
VolSDF [19] 20.71 0.943 0.126 32.96
Ours 20.97 0.944 0.124 29.26
OursIR 21.50 0.944 0.081

Table 5. Results on Shiny Dataset (6 scenes, from Ref-NeRF [13]). Mean angular error (MAE) is used in evaluating normal vectors.

weight loss Lweight and a sparsity regularization Lsparse. Both Lweight and Lsparse are weighted with a value of 1.0. The ϵ
in Lsparse is 0.001. Moreover, we do not apply weight loss for rays with weak MVS supervision (i.e. the sum of consistency-
weighted probability along the ray is less than 0.001). We found that our weight loss is highly tolerant to parameter choices.
We used grid search to find the best q but determined that all q in [0.2, 0.8] yield satisfactory results (overall error: 1.32-1.44).
We set q = 0.5 in all our experiments.
Rendering Pipeline. In testing, our method utilizes image-based rendering. We merge source pixels from multiple source
images for a target pixel. More specifically, we first render depth maps for all source views. Then, for a target view, we
render its depth map and project its pixels back to the source views and we apply consistency check on the back-projected
depths with the source depth to determine its visibility on source views and retrieve the interpolated source pixel colors. The
blending weights for pixel colors from different source views are based on the cosine between the target and source pixels’
view directions, computed using softmax with a temperature of 20. In areas where there are no valid pixels to blend (i.e., the
geometric consistency check fails for all source views), we use the rendered colors. Finally, a 4-level Laplacian pyramid [2]
is used to smoothly blend source pixels.
MVS Models. In our experiments, we compare our proposed method against TransMVSNet [6], CasMVSNet [7], and
UCSNet [4]. We employ the official implementation of each method provided by the authors and use their published pre-
trained models. To ensure a fair comparison, the weights for all three models we used were pre-trained exclusively on the
DTU dataset [1] with ground-truth depth as supervision.
Denser Plane Sweep. The main difference in our training scheme, compared to MVS models, is the usage of a denser plane
sweep, which we also implemented for all baseline MVS models, reducing their overall error by 33% on average.
The Choice of CasMVSNet and VolSDF. In our method, we select CasMVSNet [7] as the MVS model and VolSDF [19]
as the neural rendering model. We opt for CasMVSNet as it is the representative coarse-to-fine MVS model, and we find no
substantial improvement in other recent MVS models when compared to CasMVSNet for sparse-input scenarios, as demon-
strated in the main text. We use VolSDF, which is a state-of-the-art implicit surface reconstruction method, as demonstrated
in [9, 19]. Nevertheless, other neural rendering models like NeRF [10] and NeuS [15] can also be used in our method but the
differences in the overall performance are a subject for future work.
Metrics. The Chamfer distance is the average of the Accuracy (the distance from the reconstructed point cloud to reference)
and Completeness (the distance from reference to reconstruction). The use of stronger geometric/photometric filtering can
lead to better accuracy, but at the expense of completeness, and vice-versa. Given this trade-off between accuracy and
completeness in point cloud filtering, we choose to employ the Chamfer distance metric as our primary measure in the main
text, following [20, 19]. We present the Accuracy-Completeness trade-off in Fig. 9. The results reveal that we consistently
attain roughly 30% higher completeness than the baseline across all accuracy levels.
Datasets. For the DTU dataset [1], we combine the scans used in [20, 19, 21] with the ones used in conventional MVS
settings [6, 17], and remove the training scans of common MVS models. Specifically, we use scans 21, 24, 34, 37, 38, 40,
82, 106, 110, 114, and 118 for our evaluation. For evaluation on DTU, we adhere to the standard protocol in [1, 19, 11].

The BlendedMVS dataset [18] lacks a standard evaluation protocol for sparse-view scenarios. Therefore, we adopted a
similar evaluation protocol to DTU; select three sparse input views with a relatively wide baseline and evaluate using object
masks. Similar to DTU, only scene objects are used in the evaluation. This is simply performed by removing the plane from
the ground truth point cloud. The sparse view indexes we adopt are: Doll: 9, 10, 55; Egg: 9, 52, 59; Head: 22, 26, 27; Angel:
11, 39, 53; Bull: 32, 42, 47; Robot: 28, 34, 57; Dog: 2, 5, 25; Bread: 16, 21, 33; Camera: 10, 16, 60. For reference, we offer
quantitative comparisons without using object masks or removing the plane in Tab. 6.

In the context of novel view synthesis, it is noteworthy that while the BlendedMVS dataset has 360-degree views of
an object, the sparse inputs partially cover the frontal area. Consequently, conducting novel view synthesis on all images,
including the back views, is unreasonable. Therefore, we choose to evaluate the closest 12 views in each scene. The indexes
for evaluation are: Doll: 0, 13, 19, 20, 22, 31, 33, 35, 36, 37, 58, 61; Egg: 1, 8, 12, 14, 23, 27, 37, 39, 49, 65, 68, 71; Head:



Scene Doll Egg Head Angel Bull Robot Dog Bread Camera Mean

MVSNeRF [3] 22.3 -9.7 -30.8 38.1 4.1 24.8 -2.7 2.7 8.6 6.4
GeoNeRF [8] 48.8 37.9 3.6 37.6 -7.8 30.3 29.4 19.1 9.2 23.1

CasMVSNet [7] 46.2 47.7 -0.2 45.8 -6.6 41.5 41.3 8.9 31.8 28.5
Ours 47.8 62.0 23.3 54.7 20.6 49.7 48.0 59.9 49.3 46.1

Table 6. BlendedMVS 3D reconstruction results without applying object masks on the reconstruction results. Since there are no units in
BlendedMVS, we report relative improvement (in %) over VolSDF [19] in terms of Chamfer distance.

0, 1, 6, 7, 11, 13, 15, 16, 25, 28, 31, 33; Angel: 0, 2, 9, 23, 29, 30, 46, 48, 50, 59, 68, 71; Bull: 0, 13, 16, 17, 20, 24, 26, 41,
44, 55, 57, 58; Robot: 1, 2, 10, 13, 22, 25, 40, 55, 73, 75, 80, 88; Dog: 0, 6, 7, 8, 10, 13, 14, 17, 22, 23, 27, 29; Bread: 8, 10,
17, 18, 24, 25, 26, 27, 28, 30, 43, 47; Camera: 18, 25, 59, 65, 68, 83, 89, 92, 94, 118, 133, 136.



GT VolSDF [19] MVSNeRF [3] GeoNeRF [8] OursIR

Figure 2. Additional 3D reconstruction and novel view synthesis comparisons on BlendedMVS. Our results appear more complete and
accurate.
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Figure 3. Additional point cloud visualization on DTU. Results improve in all combinations of our method with different MVS models.
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Figure 4. Point cloud visualization on BlendedMVS when combining our method with CasMVSNet [7].
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Figure 5. Additional novel view synthesis comparison on DTU. Our method leads to more accurate novel views.

Figure 6. An example of the implicit surface during the optimization process. We show that, with only 10-15 minutes of training, our
output surface reconstruction is already reasonably good to guide finer stage of MVS, compared to the sub-optimal results of VolSDF [19].
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Figure 7. Quantitative results on 3D reconstruction with 3-9 input views on DTU.



GT CasMVSNet [7] VolSDF [19] Ours
Figure 8. Depth map predictions on Shiny Dataset.
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Figure 9. Completeness error and Accuracy error trade-off.
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