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Appendix A. Architecture

Reference Encoding Figure 1 illustrates the process of ref-
erence encoding. (i) For mask references, we employ the
same visual encoder EncV for both the current and refer-
ence frames to generate multi-scale features (i.e., C3, C4,
C5). We denote the encoded features of the reference frame
as F f

V , where the ℓ-th feature (ℓ = 2, 3, 4) has a size
of Hℓ × Wℓ × C, with a spatial stride of 2ℓ+1 relative
to the original size. Next, we use a lightweight mask en-
coder (ResNet-18 in all our experiments) that takes the ref-
erence frame and annotated mask as inputs. We concatenate
the last three layer features with the corresponding level
features in F f

V and further process them with two Res-
Blocks [2] and a CBAM block [10] to obtain the final out-
puts, denoted as Fm

V . Finally, we flatten each level feature
in F f

V and Fm
V into 1-dimensional vectors. (ii) For lan-

guage references, we directly use off-the-shelf text encoder
RoBERTa [6] to extract the 1-d linguistic features.
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Figure 1: The process of reference encoding for (a) mask
references and (b) language references.

Appendix B. Implementation Details

Training Details. Our training process consists of three se-

quential stages: VG pretraining, image-level training and
video-level training. We train models on NVIDIA A100
GPUs and it takes 2-3 days (depends on the visual back-
bone) to complete the whole training. The text encoder is
unfrozen during the first two stages and then frozen for the
final stage. The detailed configurations are summarized in
Table 1. We follow the implementation of Detic [13] for
the multi-dataset training. The learning rate is reduced by
the factor of 10 when the iteration reaches the specified step
in the table. Data augmentation includes random horizon-
tal flip and scale jitter for resizing the input images. In the
table, short side means the range of values for the short-
est side and long side represents the maximum value for
the longest side. During video-level training, for COCO [5]
and RefCOCO/+/g [12, 7], we apply two different augmen-
tations on the same image to generate the pseudo videos for
training. And for OVIS [8], we convert the dataset into a
class-agnostic format to make it suitable for VOS training.

Inference Details. For both RVOS and VOS tasks, all the
videos are rescaled to 480p for inference. And the score
thresholds are set as 0.4 for VOS datasets and 0.3 for RVOS
datasets, respectively. For these two tasks, both the masks in
the first frame and previous frame are adopted as references.

Appendix C. More Results

How to Use Both Language and Mask Reference for
RVOS? As shown in Figure 2, we design three strategies
to utilize both language and mask references for RVOS: se-
quential M->L, sequential L->M and parallel. The ablation
results are presented in Table 2, where it is evident that the
sequential strategies yield poor performance, while the par-
allel strategy emerges as the most effective way to integrate
both mask and language references. This finding is reason-
able since the parallel strategy is a post-fusion process so it
does not impact the visual features of the current frame.

Reference Frames for Mask Propagation. In this study,
we investigate the effect of reference frames for mask prop-



Table 1: The detailed configurations for the three training stages.

Stage Task Dataset
Sampling
Weight

Batch
Size

Short
Side

Long
Side

GPU
Number

Learning
Rate

Weight
Decay

Max
Iteration

Step

I RIS Visual Genome [4] 1 2 480 ∼ 800 1333 32 0.0002 0.0001 90000 80000

II RIS RefCOCO/+/g [12, 7] 1 2 480 ∼ 800 1333 16 0.0001 0.0001 90000 80000

III
VOS

COCO [5] 0.40 2 480 ∼ 800 1333

16 0.0001 0.05 90000 80000

Youtube-VOS2019 [11] 0.30 2 320 ∼ 640 768
LVOS [3] 0.20 2 320 ∼ 640 768
OVIS [8] 0.10 2 320 ∼ 640 768

RVOS
RefCOCO/g/+ [12, 7] 0.45 2 480 ∼ 800 1333
Ref-Youtube-VOS [9] 0.55 2 320 ∼ 640 768
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Figure 2: Three strategies for utilizing both language and
mask references for RVOS. (a) Sequential M->L: the visual
features of current frame are fused with mask and language
references sequentially. (b) Sequential L->M: the visual
features of current frame are fused with language and mask
references sequentially. (c) Parallel (used in the paper): the
visual features of current frame are fused with mask refer-
ence and language reference, respectively. The two fused
features are multiplied in the end.

Table 2: Ablation on the strategies for utilizing both lan-
guage and mask references for RVOS. Experiments are
conducted on Ref-Youtube-VOS. Our default settings are
marked in gray .

Variants J&F J F

Sequential M->L 13.8 14.6 13.0
Sequential L->M 9.5 9.6 9.5

Parallel 60.1 58.9 61.4

agation, as presented in Table 3. Specifically, we analyze
the impact of discarding the first frame and the previous
frame on performance for two datasets, namely Youtube-
VOS2018 and Ref-Youtube-VOS. These two datasets are
evaluated for VOS and RVOS tasks, respectively. On
Youtube-VOS2018, the first frame provides a reliable an-
notated mask, while the previous frame has the highest sim-
ilarity with the current frame. Therefore, discarding either
of these frames would result in a significant drop in perfor-

mance. on Ref-Youtube-VOS, no provided mask is avail-
able, and thus the performance drop is less noticeable. Nev-
ertheless, our findings support the conclusion that utilizing
both the first frame and the previous frame as references
yields the best results for mask propagation.

Table 3: Ablation on the reference frames used for mask
propagation during inference. We use the final model with
ResNet-50 visual backbone in this ablation. Our default set-
tings are marked in gray .

First Previous
Youtube-VOS2018 Ref-Youtube-VOS

G Js Fs Ju Fu J&F J F

✓ 75.2 76.7 80.4 69.0 74.9 60.1 58.6 61.7
✓ 79.2 79.8 83.9 72.8 80.3 59.6 58.1 61.2

✓ ✓ 81.4 81.6 85.9 75.6 82.4 60.6 59.0 62.3

Efficiency Comparison with Memory-based Methods.
We compare the efficiency of our UniRef and the represen-
tative memory-based method STCN [1] in Table 4. The re-
sults indicate that while our method is slightly slower than
STCN on the Youtube-VOS dataset, it is much more effi-
cient than STCN on the long-term video LVOS dataset. This
is because the memory-based methods have linear memory
complexity with respect to the video duration, while our
method has constant memory cost. To better highlight the
advantages of our method, we further plot the single-object
FPS in Figure 3.

Appendix D. Visualization Results
We provide the visualization results of UniRef-L for

RVOS tasks in Figure 4 and Figure 5. It can be seen that
our model can segment the referred objects correctly and ac-
curately in various challenging scenes, e.g., partial display,
similar objects and fast moving, as illustrated in Figure 4.

Visualization results for the VOS tasks are presented in
Figure 6 and Figure 7. Notably, our model reveals strong
ability in handling long-term videos that typically last for



Table 4: Efficiency comparison between our method and the rep-
resentative memory-based method STCN. ‘YT-VOS18’ represents
Youtube-VOS2018 dataset.

Dataset
Mean Mean FPS

Frames Objects STCN UniRef
YT-VOS18 27 1.9 13.2 10.5
LVOS 574 1.3 4.8 19.3
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Figure 3: FPS scaling of our method and the representative
memory-based method STCN.

over a minute, such as those in LVOS [3]. As shown in Fig-
ure 7, our model can accurately segment the target objects
throughout the whole video, despite the objects have signif-
icant pose variation. We further provide a video demo in the
supplementary material.

References
[1] Ho Kei Cheng, Yu-Wing Tai, and Chi-Keung Tang. Rethink-

ing space-time networks with improved memory coverage
for efficient video object segmentation. Advances in Neural
Information Processing Systems, 34:11781–11794, 2021. 2

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1

[3] Lingyi Hong, Wenchao Chen, Zhongying Liu, Wei Zhang,
Pinxue Guo, Zhaoyu Chen, and Wenqiang Zhang. Lvos: A
benchmark for long-term video object segmentation. arXiv
preprint arXiv:2211.10181, 2022. 2, 3

[4] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David A Shamma, et al. Visual genome:
Connecting language and vision using crowdsourced dense
image annotations. International journal of computer vision,
123:32–73, 2017. 2

[5] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer, 2014. 1, 2

[6] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-

moyer, and Veselin Stoyanov. Roberta: A robustly optimized
bert pretraining approach. arXiv preprint arXiv:1907.11692,
2019. 1

[7] Junhua Mao, Jonathan Huang, Alexander Toshev, Oana
Camburu, Alan L Yuille, and Kevin Murphy. Generation
and comprehension of unambiguous object descriptions. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 11–20, 2016. 1, 2

[8] Jiyang Qi, Yan Gao, Yao Hu, Xinggang Wang, Xiaoyu
Liu, Xiang Bai, Serge Belongie, Alan Yuille, Philip HS
Torr, and Song Bai. Occluded video instance segmentation:
A benchmark. International Journal of Computer Vision,
130(8):2022–2039, 2022. 1, 2

[9] Seonguk Seo, Joon-Young Lee, and Bohyung Han. Urvos:
Unified referring video object segmentation network with a
large-scale benchmark. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XV 16, pages 208–223. Springer,
2020. 2

[10] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So
Kweon. Cbam: Convolutional block attention module. In
Proceedings of the European conference on computer vision
(ECCV), pages 3–19, 2018. 1

[11] Ning Xu, Linjie Yang, Yuchen Fan, Dingcheng Yue, Yuchen
Liang, Jianchao Yang, and Thomas Huang. Youtube-vos:
A large-scale video object segmentation benchmark. arXiv
preprint arXiv:1809.03327, 2018. 2

[12] Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg,
and Tamara L Berg. Modeling context in referring expres-
sions. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part II 14, pages 69–85. Springer, 2016.
1, 2

[13] Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp
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a dog is waiting to catch the ball shown to him.
a hand is showing a ball to a dog. a lawn tennis ball in the hand of a person.

a whale swimming from the bottom to the top of the water.
a whale on the top right swimming underwater.

a skateboard being rolled through a road filled with cars and people.
a boy in black shorts and white tee shirt roller skating.

Figure 4: Visualization results on Ref-Youtube-VOS validation set.

a go-cart type car. a person driving the go cart.
person at the back of the go-cart without a helmet.

a man wearing a green helmet. a motor-bike.

a blonde haired girl dancing in a blue dress.

Figure 5: Visualization results on Ref-DAVIS17 validation set.



Figure 6: Visualization results on Youtube-VOS2018 validation set.

Figure 7: Visualization results on LVOS validation set.


