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by Learning from a Short Video

S1. Implementation Details
S1.1. Network Details

Implicit model. The implicit model fθ is defined as an 8-
layer multi-layer perceptron (MLP) with 256 channels, with
each layer accompanied by a ReLU activation function. It
is worth noting that the inputs (i.e., xc,n and ts) are actu-
ally the results of the Positional Encoding [7] of the orig-
inal data. The use of Positional Encoding allows for the
exploitation of high-frequency information, resulting in the
synthesis of high-resolution output. In detail, it encodes a
set of functions to represent an arbitrary input data p, as

γ(p) = [sin(πp), cos(πp), · · · , sin(2L−1πp), cos(2L−1πp)].
(1)

We empirically set L = 10 as [7].

Blend-Net. Blend-Net predicts a residual map of pixels in
order to effectively eliminate any artifacts that may have re-
sulted from the paste operation. In the process of designing
Blend-Net, we have taken great care to adopt a UNet-like
structure that is simplistic in nature, yet powerful in its abil-
ity to extract features of varying scales. It is noteworthy
to mention that our encoder and decoder frameworks are
composed of six and five carefully crafted CNN layers, re-
spectively. These details are highlighted in Figure S1.

+

Figure S1. Structure of Blend-Net.

S1.2. Training Details

The model is implemented in PyTorch [8] with Adam
optimizer [4], and the learning rate is set to be 1e-4. Our
model can be trained using one NVIDIA GeForce RTX
3090. It is worth noting that the sync network requires a
well-initialized lip image, and therefore, end-to-end train-
ing can result in collapse. To avoid this, we first train the
model for 100k iterations using ωm=1.0, ωw=1.0, ωd=1.0

and ωs=0.0 (details are described in Eq. 10 in the main pa-
per) to learn satisfactory visual quality. Then, for the subse-
quent 200k iterations, we add Ls to improve audio synchro-
nization, with ωs being set to 1.

S1.3. Data Preprocessing

Ground-truth lip images. The offline preprocessing of
ground-truth lip images Imo→c is depicted in Figure 4 of the
main paper. Based on our empirical experiments, the lip
boundary is accurately determined (as indicated by the or-
ange bounding box). The accompanying motion heatmaps
also demonstrate that only a small area is affected by
speech. In cases where the expected mouth motion is ex-
ceptionally large, the output may appear unnatural; how-
ever, such an occurrence is rare, based on our data analysis.

Audio preprocessing. To preprocess the audio data, the raw
audio signal is initially fed into a pre-trained DeepSpeech
network [1]. Then, it undergoes temporal smoothing via a
1D convolutional network as AD-NeRF [3].

S2. Experiments

S2.1. Comparisons on More Datasets.

Table S1 presents an evaluation of our Speech2Lip
across two datasets, following [3, 6]. It should be noted that
LSP [6] has also provided two additional training videos,
which feature the subject Nadella and the subject Obama.
However, we do not compare our model’s performance on
these two videos due to multiple shot changes with varying
focal lengths, which has made it difficult to identify a 3-5
minute long video clip for training and evaluation. As our
problem setting pertains to speaker-specific talking heads,
we focus on comparisons with other models under this set-
ting. Specifically, Testset IV (consisting of subject Obama,
with a resolution of 450× 450) and Testset V (consisting of
subject McStay, with a resolution of 550×550) are gathered
from [3] and [6], respectively. Since [6] did not provide pre-
trained models for Testset IV, we have left this field blank
in the table. Our algorithm outperforms the others, as evi-
denced by the quantitative results.



Method
Trained with Testset IV Testset V

large extra data PSNR↑ SSIM↑ CPBD↑ LMD↓ Sync↑ PSNR↑ SSIM↑ CPBD↑ LMD↓ Sync↑

Ground Truth N/A N/A 1.000 0.260 0.000 8.483 N/A 1.000 0.320 0.000 8.556

LSP [6] No - - - - - 29.076 0.726 0.243 3.830 5.770
AD-NeRF [3] No 32.684 0.931 0.231 3.092 3.722 28.858 0.812 0.308 3.810 4.981
DFRF [9] No 33.385 0.967 0.239 3.095 3.831 30.259 0.918 0.313 4.016 4.127
Speech2Lip No 33.791 0.971 0.258 3.701 4.527 31.737 0.921 0.318 3.767 6.884

Table S1. Quantitative results compared with the previous SOTA methods. Image quality assessment metrics (i.e., PSNR, SSIM, and
CPBD) are computed within mouth region. The best results are bold.

S2.2. Comparisons with More Speaker-specific
Models

We further compare our algorithm against speaker-
specific models, such as SynObama [10], NVP [11], and
SSP-NeRF [5], which have released neither code nor pre-
trained models, but demo videos. Specifically, to synthesize
images, we extract speech from the demo of SSP-NeRF [5],
which features video clips for comparison with both Syn-
Obama [10] and NVP [11]. We utilize Testset VI for com-
paring with SynObama [10] and SSP-NeRF [5], and Testset
VII for comparing with NVP [11] and SSP-NeRF [5]. Qual-
itative results are provided in Figure S2. Given the absence
of any ground-truth images, we emphasize the correspond-
ing letters and the results demonstrate the superiority of our
algorithm.

SynObama SSP-NeRF Ours NVP SSP-NeRF Ours

English word: together English word: degree

English word: more English word: by

Figure S2. Qualitative results with corresponding letters being
highlighted.

S3. More Analyses

S3.1. Empirical Study and Motivations

We select some video clips from our dataset that
a speaker is pronouncing the same word (“pour” and
“officier” in French). As seen in Figure S3, the subjects
display a range of head poses and appearances, indicating
their insensitivity to the input speech. Relying solely on
speech to generate the synthesis of all facial areas can result
in ambiguous training signals, which may force the model
to learn inaccurate correlations, particularly when the train-
ing data is limited. This highlights the need for a more
targeted approach in modeling speech-synchronized facial
animation.

French word: vous

Figure S3. Different head motions with similar speeches.

S3.2. Analysis about Motion Heatmap

In line with Section 3 of the main paper, we provide
additional examples of motion heatmap to showcase the
key insight of our method: the disentanglement of speech-
sensitive and speech-insensitive appearance and motion.
This facilitates the synthesis of high-fidelity results.

The motion heatmap is defined as the variance map of
the image sequence. Figure S4 depicts the motion heatmaps
(the last column) for images captured under observed views
(the first column) that are warped to the canonical space (the
second column) based on 3DMM [2]).

In Figure 3 of the main paper, it has been established
that head motion is insensitive to input speech. However,
upon the elimination of head motions, the major motion
is concentrated around the lip region (as depicted in the
last column of Figure S4). In such a scenario, a sim-
ple yet efficient solution is to learn a mapping from input
speech to the lip area. This stimulates the devisal of our
proposed decomposing-synthesis-composition framework,
which disentangles speech-sensitive and speech-insensitive
appearance and motion, enabling our model to learn more
effectively from short data.

S3.3. Analysis about Sync Score

To verify the relationship between the Sync score and
synchronization quality, we devised a toy experiment that
involved the generation of unsynced videos through the
shifting of image sequences. As shifting offsets become
larger, the synchronization quality becomes worse, there-
fore we can evaluate corresponding Sync scores based on
the synchronization quality. As demonstrated in Figure S5,
the Sync score is sensitive to synchronization quality only
within a certain range.



Observed View Canonical View Motion Heatmap

Figure S4. More speech-sensitive motion heatmaps.

Figure S5. Relationship between Sync score and synchronization
quality.

S4. Limitations and Discussions

While the proposed decomposing-synthesis-composition
framework can generate reasonably good results using a
very short video (3 ∼ 5 minutes), we also inherit the same
limitation from the speaker-specific setting. Specifically,
this means that 1) individual models must be trained for
each particular person and 2) the range of appearances dis-
played by the generated lip sequences is constrained by the
available training data.

Our proposed framework can synthesize realistic, high-
fidelity talking head videos using only very little training
data, which may be used to manipulate media, such as
videos or images, that can be used to deceive or spread
disinformation. It may have potentially negative implica-
tions for society, including political manipulation, financial
fraud, and reputational damage. Therefore we urge caution
to prevent any potential improper use.

In the future, we plan to make the model adaptive to en-
vironmental changes (e.g. illumination changes), which can
be valuable for practical applications. We also aspire to en-
hance the model’s ability to generalize and refine its output

quality while decreasing the amount of necessary training
data.
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