
TinyCLIP: CLIP Distillation via Affinity Mimicking and Weight Inheritance
—— Supplementary Material ——

This supplementary material presents additional details
of Sec. 4.1 and 4.3.

• Distillation Temperature. In Appendix A, we study
the sensitivity analysis of the temperature parameter τ
in Affinity Mimicking of Sec. 4.1.

• Training Settings. In Appendix B, we provide the de-
tailed training settings for TinyCLIP in Sec. 4.1.

• Architectures in Automatic Inheritance. In Appendix
C, we expound the architectures of TinyCLIP before and
after automatic weight inheritance.

• Additional Analysis. In Appendix D, we further inves-
tigate different interaction modes in Impact of affinity
mimicking, as well as the efficacy of weight inheritance
on single modality compression in Sec. 4.3.

A. Distillation Temperature

As shown in Fig. 7, when 1
τ is 50, it obtains the best ac-

curacy. If 1
τ is lower than 30, the probability distribution be-

comes uniform, which prevents the model from converging.
Furthermore, when 1

τ exceeds 100, the probability distribu-
tion approaches a hard label of 0 or 1, which results in a
lack of transfer of relationship knowledge from the teacher
model to the student model. Therefore, we set the tempera-
ture parameter to 1

50 by default.

B. Training Settings

Tab. 8 presents an overview of hyperparameters used
for training on LAION-400M [9] and YFCC-15M [11]
datasets. The compression process is divided into three
stages on LAION-400M [9] or two stages on YFCC-15M
[11], in consistency with Sec. 4.1 of the main manuscript.
We also combine LAION-400M [9] and YFCC-15M [11]
as a training set in Sec. 4.2, named LAION+YFCC-400M,
where the number of pairs is 400M, and each batch con-
sists of 2:1 pairs sampled from the two datasets. Its training
setting is the same as that on LAION-400M [9].
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Figure 7. Ablation study on the distillation temperature parame-
ter. The student model TinyCLIP ViT-40M/32 is inherited and
distilled on LAION-400M [9] for 1 epoch. The zero-shot accu-
racy on ImageNet-1K [1] is reported.

Hyper-parameter LAION-400M YFCC-15M

Batchsize 32,768 4,096
Optimizer AdamW [6, 4]

Optimizer Momentum β1 = 0.9, β2 = 0.98
Base Learning Rate 10−4

Weight Decay 0.2
Learning Rate Schedule Cosine decay [5]

Warmup (steps) 2,000
Gradient Clipping Norm 5

The Reciprocal of Temperature 50
Image Resolution 224× 224

Image Augmentation RandomResizedCrop
Tokenizer Byte Pair Encoding [10]

Vocabulary size 49,408
Max Sequence Length 77

Table 8. Training settings on LAION-400M [9] and YFCC-15M
[11] datasets.

C. Architectures in Automatic Inheritance
In this section, we utilized CLIP ViT-B-32 [7, 3] as an

example to illustrate the architecture after 50% automatic
weight inheritance.

Vision Transformer Text Transformer # params (M)

Model width heads inter width heads inter vision text total

CLIP ViT-B/32 768 12 3072 512 8 2048 88 38 126
TinyCLIP ViT-45M/32 537 9.3 2044.7 508 5 749.4 45 18 63

Table 9. Encoder specifics. Since TinyCLIP with automatic in-
heritance has different channels per layer, we report the average
number of all 12 layers. Let width, heads and inter denote embed-
ding dimension, MHA heads and FFN channels, respectively.
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Figure 8. The number of remaining MHA heads, FFN channels
and embeddings of CLIP image and text encoder after 50% auto-
matic weight inheritance. The orange bars represent MHA heads,
the green bars denote FFN channels, the blue bars refer to embed-
ding channels.

CLIP ViT-B/32 [7] adopts ViT-B/32 [2] (Lc=12, Nh=12,
d=768, p=32) as the image encoder and Transformer [12]
(Lc=12, Nh=8, d=512) as the text encoder, where Lc rep-
resents the layers, Nh denotes the MHA (Multi-Head At-
tention) heads, d refers to the embedding dimension and p
is the patch size. Consistent with automatic inheritance de-
scribed in Sec. 3.2, we select important weights by inserting
masks.

As shown in Fig. 8 and Tab. 9, we present the struc-
ture of TinyCLIP ViT-45M/32 after automatic weight in-
heritance. For the image encoder, MHA heads and FFN
(Feed-Forward Network) channels are kept more than text
encoder, and the discarded parts are mainly concentrated in
the first few or the last layers. Besides, embeddings of im-
age encoder are compressed from 768 to 537 channels. For
the text encoder, MHA heads and FFN channels in trans-
former layer are retained fewer, and the discarded parts are
mainly concentrated in the middle layers, while embeddings
are almost all kept. This reflects the redundancy difference
between image branch and text branch, where image en-
coder has more redundancy in width (embeddings) and text
encoder has more redundancy in depth (transformer layers).

We speculate that this redundancy difference is caused
by the information density of images and text. Image data
has low information density, thus more MHA heads and
FFN channels are needed to handle details and high-level
features when encoding images, so as to enhance the ex-
pressiveness of the model. In contrast, text data has high
information density, so the embeddings are kept to facilitate
the model’s learning of the semantic information.

Loss Similarity IN-1K Flickr30k MSCOCO
single- cross- top1 I→T T→I I→T T→I
modal modal acc(%) R@1 R@1 R@1 R@1

Contrastive loss
L0 - - 53.4 71.8 53.1 44.4 28.7

Affinity mimicking
L0 + L1 0.74 0.32 55.1 71.8 54.0 46.4 29.6

L1 (or Ldistill) 0.77 0.32 55.5 74.0 55.0 46.7 30.9
Cross modalities

L2 + L3 0.88 0.37 55.3 72.4 54.8 46.5 30.0
L1 + (L2 + L3) 0.88 0.37 56.2 72.9 55.1 47.1 30.5
Single modality

L4 + L5 0.57 0.50 19.2 38.2 23.4 20.5 10.0
L1 + (L4 + L5) 0.69 0.35 55.2 73.1 55.5 46.9 30.1

Table 10. Ablation study on different interactions. The model
OpenCLIP ViT-B/32 [3] pre-trained on LAION-2B [8] is the
teacher, inherited to the student model TinyCLIP ViT-40M/32 on
LAION-400M [9] for 1 epoch. The average similarity of student’s
embedding feature and teacher’s one is reported.

D. Additional Analysis
In this section, we provide the detail of different interac-

tions of distillation losses in Sec. 4.3, then study the effect
of single modality compression to verify the redundancy
differences between image and text encoder.

D.1. Different Interaction Modes

We provide more metrics for Tab. 2 in the manuscript.
As shown in Tab. 10, affinity mimicking L1 outperforms
contrastive loss L0 by 2.1% zero-shot top-1 accuracy on Im-
ageNet [1]. Using L1 alone is better than the combination of
L0 and L1. Furthermore, when combining with L1, cross
modalities L2 and L3 improves the zero-shot accuracy on
ImageNet by 2.8% compared to L0. We observe that cross
modalities interaction brings a high single-modal similarity
of 0.88, enabling students’ embedding space to align with
the teacher’s one. However, single modality interaction do
not work. We conjecture that the interaction on the same
modality brings little information, since the teacher model
is only trained by the interaction of different modalities.

D.2. Single Modality Compression Analysis

We evaluate the impact of compression on single modal-
ity with manual weight inheritance. As shown in Tab. 11,
when removing the last 4 layers in the text encoder, the 0-
epoch accuracy on ImageNet [1] is 24.0% (#1), while for
the image encoder, the 0-epoch accuracy is 0% (#5). It in-
dicates that the layer-wise redundancy of the text encoder is
larger than that of the image encoder.

Moreover, when training student models for 1 epochs,
weight inheritance brings 3.6% accuracy for text encoder
(#3 vs. #2) and 9.8% accuracy for image encoder (#7 vs.
#6). It demonstrates weight inheritance brings a good ini-
tialization for student models.

To further investigate the impact of compression, we
train #4 for the short 5 epochs, which achieves 64.2% ac-



# Image Text #Params Ep. IN-1K MSCOCO
depth depth image+text top1 I→T T→I
-width -width (M) acc (%) R@1 R@1

0 12-768 12-512 88+38 32 65.7 56.9 39.3
Weight inheritance for text encoder
1 12-768 8-512 88+26 0 24.0 11.1 7.1
2 12-768 8-512 88+26 1 59.1 49.0 32.9
3 12-768 8-512 88+26 1 62.7 53.2 35.8
4 12-768 8-512 88+26 5 64.2 53.5 36.4
Weight inheritance for image encoder
5 8-768 12-512 60+38 0 0.0 0.0 1.7
6 8-768 12-512 60+38 1 41.5 36.1 21.1
7 8-768 12-512 60+38 1 51.3 46.3 29.1
8 12-640 12-512 61+38 1 58.2 51.2 33.9

Table 11. Ablation study on compression for single modality. The
image and text encoders are both transformers, where repre-
sents frozen weights, and represents weight inheritance. The
weights are inherited from OpenCLIP ViT-B/32 [3], pre-trained
on LAION-2B [8]. All models are trained on LAION-400M [9]
without distillation.

curacy with 12M (31.6%) parameters reduction on text en-
coder. Besides, we reduce the width of image encoder (#8),
which surpasses reducing the depth of image encoder (#7)
by significant 6.9% accuracy. It indicates that compressing
along the width dimension is better than the depth dimen-
sion for image encoder.
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