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A. Extended Experimental Results
Robustness Attribution. The findings presented in Ta-

ble 1 indicate that the reason behind the noise robustness

observed in prompt tuning can be attributed to the structured

form imposed on class embeddings by CLIP’s pre-trained

text encoder.

Dataset Method Noise rate
0 12.5 25 50

Classifier-R 74.82 64.10 55.96 36.63

Classifier-C 81.47 70.29 61.87 44.21

TEnc-FT 84.38 70.73 61.11 41.21
OxfordPets

Prompt Tuning 87.89 84.62 81.20 73.13
Classifier-R 88.19 74.48 61.14 42.68

Classifier-C 89.94 77.04 63.81 45.96

TEnc-FT 90.75 76.67 62.76 46.45
Caltech101

Prompt Tuning 90.65 82.51 78.70 70.13
Classifier-R 83.40 69.58 60.85 37.74

Classifier-C 94.11 80.26 69.18 47.55

TEnc-FT 94.62 80.91 70.83 49.54
Flowers102

Prompt Tuning 91.71 86.24 81.92 71.80
Classifier-R 63.80 54.66 46.23 28.97

Classifier-C 69.36 60.46 51.85 34.37

TEnc-FT 71.30 61.60 52.64 34.74
Food101

Prompt Tuning 76.99 73.63 71.07 64.30
Classifier-R 30.38 24.84 20.89 13.32

Classifier-C 34.46 29.97 25.91 17.36

TEnc-FT 35.30 29.66 25.31 17.42
FGVCAircr

Prompt Tuning 27.13 25.07 23.34 19.05
Classifier-R 48.02 44.30 40.32 30.10

Classifier-C 63.83 57.14 50.36 34.86

TEnc-FT 63.61 55.47 48.21 33.12
DTD

Prompt Tuning 62.86 58.90 53.62 46.19
Classifier-R 67.16 58.33 50.34 31.07

Classifier-C 71.87 64.12 54.79 38.01

TEnc-FT 73.74 64.52 56.10 37.88
UCF101

Prompt Tuning 73.12 68.73 67.66 60.93

Table 1: Comparison of transfer performance at incremental

noise rates between different variants.

Table 2 validates two observations: (a) the significance

of the text encoder in offering robust regularization of the

text embeddings to tackle noisy inputs (Prompt Tuning ver-

Dataset Method
Noise rate

0 12.5 25 50

Full-Prompt-Tuning 85.39 74.00 68.66 50.50

CLS-Tuning 85.04 77.02 71.03 53.15OxfordPets

Prompt Tuning 87.89 84.62 81.20 73.13
Full-Prompt-Tuning 89.21 74.20 61.26 45.92

CLS-Tuning 89.13 76.84 62.27 48.64Caltech101

Prompt Tuning 90.65 82.51 78.70 70.13
Full-Prompt-Tuning 93.93 83.58 77.00 59.52

CLS-Tuning 93.47 84.19 78.74 61.79Flowers102

Prompt Tuning 91.71 86.24 81.92 71.80
Full-Prompt-Tuning 72.36 63.14 55.29 38.69

CLS-Tuning 72.07 63.91 56.97 41.73Food101

Prompt Tuning 76.99 73.63 71.07 64.30
Full-Prompt-Tuning 32.28 28.16 24.67 16.76

CLS-Tuning 30.84 27.86 24.51 17.63FGVCAircraft

Prompt Tuning 27.13 25.07 23.34 19.05
Full-Prompt-Tuning 62.80 55.50 49.01 34.66

CLS-Tuning 62.78 56.15 48.46 35.43DTD

Prompt Tuning 62.86 58.90 53.62 46.19
Full-Prompt-Tuning 73.02 64.31 57.11 40.42

CLS-Tuning 72.73 65.64 58.91 44.55UCF101

Prompt Tuning 73.12 68.73 67.66 60.93

Table 2: Comparison of transfer performance at incremental

noise rates between different prompt designs.

sus classifiers); and (b) the necessity of fixing the text en-

coder to prevent overfitting (Prompt Tuning versus TEnc-

FT).

Robustness to Correlated Label Noise. Table 4 shows that

transfer learning faces a greater challenge with confusion

noise, resulting in a great decline in classification accuracy

at higher noise ratios as opposed to random noise. This de-

cline is evident in both prompt tuning and linear probes.

The robustness of prompt tuning is evident in its ability to

outperform linear probes, even when faced with more chal-

lenging noise types.

Integration with Noise-Robust Losses. We examine the

effectiveness of a robust loss function applied to prompt

tuning with noisy labels. In this study, We adopt General-

ized Cross Entropy (GCE) [3] as a representative of robust

loss functions for noise-robust learning. Specifically, cross-



entropy loss in Eq. 2 is replaced with GCE loss during the

training process. Figure 1 shows results of applying GCE

loss to prompt tuning and linear probing for CLIP’s vision

encoder. We observe that both transfer learning methods

obtain an improvement of noise robustness by training with

GCE loss. In particular, prompt tuning further enhances

its inherent noise robustness. This outcome suggests that

prompt tuning offers great applicability to couple with ex-

isting noise-robust loss functions. In addition to GCE, Fig-

ure 2 shows two additional robust loss functions: Symmet-

ric Cross Entropy (SCE) [2] and Normalized Cross Entropy

(NCE) combined with a Reverse Cross Entropy (RCE) [1].

Both losses also improve the noise robustness of prompt

tuning, but GCE still achieves slightly better performance.

Dataset Method 0-Shot

OxfordPets Random Prompt 40.93±11.19

Caltech101 Random Prompt 59.65±9.56

Flowers102 Random Prompt 14.86±8.40

Food101 Random Prompt 34.63±11.10

FGVCAircraft Random Prompt 3.43±1.97

DTD Random Prompt 21.20±3.51

UCF101 Random Prompt 32.93±5.48

Table 3: CLIP zero-shot with random prompts.

Dataset Method Random Confusion

OxfordPets
Linear Probe 46.42±0.88 41.39±1.87

Prompt Tuning 73.13±3.76 66.55±2.02

Caltech101
Linear Probe 56.24±1.96 56.25±6.92

Prompt Tuning 70.13±3.76 70.86±1.83

Flowers102
Linear Probe 68.92±0.76 45.94±0.69

Prompt Tuning 71.80±1.00 69.63±1.31

Food101
Linear Probe 42.63±0.89 37.71±0.52

Prompt Tuning 64.30±2.58 63.93±1.45

FGVCAircraft
Linear Probe 21.98±0.48 15.38±0.71

Prompt Tuning 19.05±1.06 18.04±1.32

DTD
Linear Probe 42.29±2.12 37.69±1.70

Prompt Tuning 46.19±2.12 45.76±1.23

UCF101
Linear Probe 54.05±1.19 50.90±1.45

Prompt Tuning 60.93±0.94 59.11±0.70

Table 4: The impact of random and confusion label noise

at a 50% noise rate on Linear Probing and Prompt Tuning

strategies.

B. Capacity of classifiers with random prompt
tokens

Prompt tuning has a limited parameter space given by the

length of the prompt tokens. This parameter space is funda-

mentally different from that of a whole neural network and

may present special properties related to the robustness of

the model. Instead of updating the learnable prompts with

noisy data, we evaluate the classifiers with random prompts
. Table 3 summarizes the average zero-shot performance

over 100 runs. Surprisingly, the results show that CLIP can

achieve non-trivial zero-shot performance, even with ran-

dom prompts. This indicates that as long as the classname

token is provided to the pre-trained text encoder, CLIP is ca-

pable of computing non-trivial class embeddings for generic

image classification.

C. Unsupervised Prompt Tuning Settings
Pseudo-labels are generated by CLIP zero-transfer with

ResNet50 image encoder. We follow the prompt engineer-

ing used by CLIP. There are three types of hand-crafted

prompts: ”A photo of a <label name>” for generic object

datasets; ”A photo of a <label name>, a type of <collective

name>” for fine-grained object datasets (e.g., prompts for

OxfordPets are appended ”a type of dog” or ”a type of cat”);

and ”<label name> texture” for the DTD dataset. K is set

to 16 in all experiments.
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Figure 1: Incorporating the generalized cross-entropy (GCE) [3] loss with Prompt Tuning and Linear Probe methods, origi-

nally trained using cross-entropy, can enhance their noise robustness. At high noise rates. PromptTuning(+GCE) consistently

and significantly outperforms other approaches on all datasets.
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Figure 2: Combination of traditional transfer learning and

prompt tuning approaches, with three robust loss functions.
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