A.Appendix
A.1.Coln++

Our Coln framework provides better initial pseudo la-
bels, and its performance can be further enhanced by a
self-training framework. Specifically, we propose a Coln-
based instance-level pseudo-label mining method, named
Coln++. As illustrated in Fig. 5, Coln++ contains two key
parts: (1) a Global Transformation module, which gener-
ates different point cloud representations of the same scene;
and (2) an IoU-Guided Fusion module, which mines more
reliable labels.
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Figure 5. Our proposed Coln++ pipeline, which mainly consists of
a Global Transformation module and IoU-Guided Fusion module.

Global Transformation. The successful practice on
the fully supervised methods [32, 45, 22] proves that the
global transformation operation can enhance the robustness
and accuracy of the detection performance. Inspired by
this, we use global transformation on train split to ob-
tain robust pseudo labels. Specially, we adopt two types of
common global transformation operations: (i) flipping the
whole scene along X-axis; and (ii) rotating the whole scene
around Z-axis with angles of —% and §. We obtain six dif-
ferent scene representations of the same scene (denoted as
Py _¢).

IoU-Guided Fusion. Under extremely limited annota-
tions, we obtain a well-performed initial Coln. The Coln
takes P;_g as inputs and generates six corresponding pre-
diction results. Inspired by SS3D[14], we propose an IoU-
Guided fusion module to fuse the results of six transformed
scenes to obtain more reliable pseudo labels. Because the
adopted global transformation is reversible, after we get the
detection results, we first perform the inverse transforma-
tion on the prediction boundary box according to the trans-
formation rules. Then, we calculate the IoU matrix between
predicted bounding boxes of the same instance in different
scenes. Finally, we filter out outmatched predictions ac-
cording to the threshold 77,y and use WBF [25] strategy to
fuse boxes with high overlap.

A.2. Indistinguishable Features

As shown in Fig. 6, we compared indistinguishable fea-
tures with discriminative features. The characteristic of in-
distinguishable features is that the distribution of features

between different categories is relatively chaotic. When
mapped to a one-dimensional space, it is not possible to dif-
ferentiate between different categories. In contrast to indis-
tinguishable features, discriminative features can be easily
differentiated in a one-dimensional space.
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Figure 6. The comparison between indistinguishable features and
discriminative features.

A.3.Visualization

Comparison of qualitative results. Fig. 7 shows the
comparison of qualitative results between CenterPoint and
Coln with 2% annotations on the wval split of KITTI[7]
dataset. The yellow, blue and red bounding boxes repre-
sent the ground truth, CenterPoint[40] and Coln, respec-
tively. Our Coln can solve most of CenterPoint’s missed de-
tections. But unfortunately, for distant objects (very sparse
point cloud), Coln cannot detect successfully due to signif-
icant similarity differences.

Figure 7. Comparison of qualitative results between CenterPoint
and Coln with 2% annotations on the val split of KITTI [7]
dataset. The yellow, blue and red bounding boxes represent the
ground truth, CenterPoint [40], and Coln, respectively.
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