
A. The Proof for Theorem 1

In this paper, we use the similar proof skills in [6] to
prove Theorem 1. The details are presented as follows. Our
method inherits the cross-update paradigm [1]. That is, we
exploit two networks, where they select possible clean ex-
amples for the peer network. Although two networks have
different initialization and diverse outputs, the outputs can-
not be totally different. In each epoch, there are a fixed
number of examples that are selected for the network train-
ing. We denote the fixed number as nt. The sets including
examples for training of f1 and f2 are denoted as S1 and S2.
Here, we analyze the composition of S1, since the analysis
of S2 is the same. We omit the index of S for simplicity.
During training, we suppose that S = σs ∪ σl. For the ex-
ample in σs, the loss LD is small. While, for the example
in σl, the loss LD is large. At its most extreme, we can
measure the magnitude of the loss from whether it means
different predictions [9]. This division means that, for f1,
the important information provided by f2 exists in σl.

We first analyze the divergence between any f2 ∈ F2

and S. The divergence between f2 ∈ F2 and the target
concept c is d(f2, c) for any x ∈ σs. For any x ∈ σl, the
important information for generalization is provided by f1.
The divergence between any f2 ∈ F2 and f1 is d(f2, f1).
Let X1, . . . , Xnt

be random variables taking on values in
[0, 1], which correspond the divergence between the outputs
of f2 and its assigned-label. We then have

E[X] = E[

nt∑
j=1

Xj ] = nsd(f2, c) + nld(f2, f1) (1)

= nsLD(f2, c) + nlLD(f2, f1)

Then, we analyze the divergence between the target concept
c and S. Assume that the classification loss is normalized.
Let X ′

1, . . . , X
′
nt

be random variables taking on values in
[0, 1], which correspond the divergence between the outputs
of the target concept c and S. Similar to Eq. (1), we have

E[X ′] = E[

nt∑
j=1

X ′
j ] = nld(c, f1) = nlLC1. (2)

The empirical risk minimization is used in this paper.
Therefore, the algorithm will search out the classifier that
has a small divergence from S. If there is a classifier whose
loss is no larger than ζ2 with probability at least 1 − δ, S
should guarantee that the classifier whose loss is larger than
ζ2 has a smaller divergence with S than the target concept c
with probability no larger than δ. Therefore, for f2 ∈ F2, if
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If f2 further minimizes the empirical risk on S , X ≤ X ′.
Considering that there are at most |F2|−1 classifiers whose
losses are larger than ζ2. According to Hoeffding bounds
[3], we have
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will hold, which guarantee that the classifier whose loss
is larger than ζ2 has a smaller divergence with S than the
target concept c with probability no larger than δ. Thus,
we have that p(LC2 < ζ2) ≥ 1 − δ holds. Similarly,
p(LC1 < ζ1) ≥ 1− δ holds.

B. Supplementary Experimental Settings
B.1. Details of Used Datasets

The statistics of used datasets are shown in Table 1.



Table 1. The summary of simulated noisy datasets used in the ex-
periments.

Dataset type # of training # of testing # of class size
MNIST image 60,000 10,000 10 28×28×1

F-MNIST image 60,000 10,000 10 28×28×1
SVHN image 73,257 26,032 10 32×32×3

CIFAR-10 image 50,000 10,000 10 32×32×3
CIFAR-100 image 50,000 10,000 100 32×32×3

NEWS text 11,314 7,532 20 300-D

B.2. Details of Noise Generation

Class-balanced cases. Here, we introduce the details of
generating different types of noisy labels. We mainly follow
the settings in [10]. The details are described as follows:

⋄ Instance-independent noise
- Symmetric noise.: We flip clean labels in each class

uniformly to incorrect labels of other classes.
- Pairflip noise: We flip clean labels in each class to its

adjacent class.
- Tridiagonal noise: the noise corresponds to a spectral

of classes where adjacent classes are easier to be mutually
mislabeled, which can be implemented by two consecutive
pair flipping transformations in the opposite direction.

We corrupt clean datasets manually by the label transi-
tion matrix T , where Tij = p(ỹ = ej |y = ei), given that
noisy ỹ is flipped from clean y. When the noise rate is set to
ϵ, the transition matrices for the above three types of label
noise are shown in (9), (10), and (11).

⋄ Instance-dependent noise
- Instance noise: We consider that the probability that

an instance is mislabeled depends on its features/instances.
The generation of such a kind of noise follows the procedure
in [11, 8, 4].

Sym. ϵ: T =


1− ϵ ϵ

c−1 . . . ϵ
c−1

ϵ
c−1

ϵ
c−1 1− ϵ ϵ

c−1 . . . ϵ
c−1

...
. . .

...
ϵ

c−1 . . . ϵ
c−1 1− ϵ ϵ

c−1
ϵ

c−1
ϵ

c−1 . . . ϵ
c−1 1− ϵ


c×c

.

(9)

Pair. ϵ: T =


1− ϵ ϵ . . . 0 0
0 1− ϵ ϵ . . . 0
...

. . .
...

0 . . . 0 1− ϵ ϵ
ϵ 0 . . . 0 1− ϵ


c×c

.

(10)

Trid. ϵ: T =


1− ϵ ϵ

2 . . . 0 ϵ
2

ϵ
2 1− ϵ ϵ

2 . . . 0
...

. . .
...

0 . . . ϵ
2 1− ϵ ϵ

2
ϵ
2 0 . . . ϵ

2 1− ϵ


c×c

.

(11)

Class-imbalanced cases. In this paper, we consider two
types of ways for building imbalanced noisy datasets.
The first one is asymmetric noise, which is injected into
four datasets, i.e., MNIST, F-MNIST, SVHN, and CIFAR-
10. For MNIST, flipping 2→7, 3→8, 5↔6. For F-
MNIST, flipping TSHIRT→SHIRT, PULLOVER→COAT,
SANDALS→SNEAKER. For SVHN, flipping 2→7, 3→8,
5↔6. For CIFAR-10, flipping TRUCK→AUTOMOBILE,
BIRD→AIRPLANE, DEER→HORSE, CAT↔DOG. As
some flip processes (e.g., 2→7, but not 2↔7) are not bidi-
rectional, the simulated noisy datasets are imbalanced ac-
cordingly.

C. Supplementary Experimental Results
C.1. Results on Balanced Noisy Datasets

In the main paper, we have provided experimental re-
sults on simulated CIFAR-10 and NEWS. Here, we provide
results on the other four balanced noisy datasets, which are
shown in Table 2. Besides, before this, for the symmetric
noise, we set the noise rate to 20% and 40% respectively to
verify the effectiveness of our method. Here, we increase
the noise levels to 50%, 60%, and 70% to further support
our claims. Experiments are conducted on MNIST and F-
MNIST. The experimental results in Tables 3 support our
claims well.

C.2. Results on Imbalanced Noisy Datasets

Experiments on noisy long-tailed CIFAR-100. We pro-
vide the experiments on noisy imbalanced CIFAR-100.
Note that, it is somewhat complex to consider the visual
similarity of classes in CIFAR-100, since there are a large
number of classes. Therefore, we focuses on noisy long-
tailed cases. The asymmetric noise injected into CIFAR-
100 is bulit by: the 100 classes are grouped into 20 super-
classes, and each has 5 sub-classes. Each class is then
flipped into the next within the same super-class. In addi-
tion, long-tailed CIFAR-100 is built similarly to MNIST and
SVHN, resulting in the L-CIFAR-100-1 and L-CIFAR-100-2
datasets. The other settings are the same as the experiments
on noisy balanced CIFAR-100. The results are provided
in Table 4, which verify the effectiveness of the proposed
method. Note that the reported test accuracy of all methods
is relatively low. It is because CIFAR-100 is challenging,



Table 2. Mean and standard deviations of test accuracy (%) on five balanced noisy datasets with different noise levels. The test accuracy
is calculated over the last ten epochs. The results are reported over five trials. The best result and second best result in each case are
highlighted in red and blue respectively.

Noise type Sym. Pair. Trid. Ins.
Setting 20% 40% 20% 40% 20% 40% 20% 40%

M
N

IS
T

APL 98.76±0.06 94.92±0.31 98.66±0.10 68.44±2.95 98.93±0.04 76.44±3.04 97.63±0.73 87.90±1.94
CDR 94.77±0.17 92.16±0.73 93.25±0.90 71.02±3.89 94.06±0.92 70.28±4.01 93.17±0.96 77.45±3.04
MentorNet 95.04±0.03 92.08±0.42 93.19±0.17 90.93±1.54 96.42±0.09 93.28±1.37 94.65±0.73 90.11±1.26
SIGUA 92.31±1.10 91.88±0.92 93.77±1.40 86.22±1.75 94.92±0.83 83.46±2.98 92.90±1.82 86.34±3.51
Co-teaching 97.53±0.12 95.62±0.30 96.05±0.96 94.16±1.37 98.05±0.06 96.18±0.85 97.96±0.09 95.02±0.39
Decoupling 98.39±0.08 81.56±0.72 97.82±0.31 66.48±0.78 98.33±0.11 74.55±0.97 98.05±0.30 71.87±1.24
Co-teaching+ 98.25±0.13 92.63±0.34 97.30±0.16 92.00±0.31 98.00±0.16 93.06±0.24 96.83±0.28 89.99±0.37
JoCor 98.42±0.14 98.04±0.07 98.01±0.19 96.85±0.43 98.45±0.17 96.98±0.25 98.62±0.06 96.07±0.31
CoDis 98.80±0.04 98.33±0.09 98.28±0.12 95.39±1.24 98.93±0.04 97.17±0.14 98.40±0.15 96.12±0.96

F
-M

N
IS

T

APL 91.73±0.20 89.06±0.41 90.22±0.80 78.54±4.33 90.84±0.22 86.53±0.76 90.96±0.77 85.55±2.86
CDR 85.62±0.96 71.83±1.37 85.72±0.65 69.07±2.31 86.75±1.19 73.63±2.82 85.92±1.43 73.14±3.12
MentorNet 90.37±0.17 86.53±0.65 87.92±0.18 83.70±0.49 88.74±0.33 85.63±0.59 87.52±0.15 83.27±1.42
SIGUA 87.64±1.29 87.23±0.32 69.59±5.75 68.93±2.80 79.97±3.23 76.14±4.24 79.97±3.23 76.14±4.24
Co-teaching 91.48±0.10 88.80±0.29 90.77±0.23 86.91±0.71 91.24±0.11 89.18±0.36 90.60±0.12 87.90±0.45
Decoupling 88.89±0.47 70.45±0.62 87.03±0.32 60.12±0.23 88.42±0.37 65.98±1.05 87.16±0.77 63.48±0.88
Co-teaching+ 89.95±0.18 83.73±0.44 88.33±0.45 71.76±1.57 89.68±0.41 79.47±0.92 88.64±0.26 75.40±2.40
JoCor 91.97±0.13 89.96±0.19 91.52±0.24 87.40±0.58 92.01±0.17 89.42±0.33 91.43±0.71 87.59±0.94
CoDis 92.21±0.17 90.49±0.24 91.66±0.31 87.07±0.51 92.19±0.30 88.70±0.94 91.48±0.52 88.04±0.58

SV
H

N

APL 89.05±0.43 83.51±3.03 89.29±1.23 68.07±4.98 90.88±1.31 80.86±2.28 90.21±0.52 72.75±4.25
CDR 83.45±1.23 61.99±1.42 82.72±0.76 59.76±1.06 83.42±0.88 63.19±1.22 82.11±0.27 60.05±1.39
MentorNet 93.18±0.26 92.02±0.24 92.78±0.25 81.05±0.37 92.99±0.16 90.16±0.16 92.21±0.27 87.60±0.79
SIGUA 92.31±0.32 89.73±0.34 75.88±2.43 72.21±3.61 82.94±2.06 78.14±4.25 77.29±7.68 76.40±3.85
Co-teaching 93.61±0.11 91.89±0.25 93.53±0.20 90.37±0.49 93.62±0.19 90.65±0.43 93.13±0.36 89.99±0.65
Decoupling 88.46±0.19 65.22±3.74 87.80±0.83 63.02±3.28 89.04±0.61 66.73±0.64 87.25±0.93 62.06±1.34
Co-teaching+ 90.31±0.30 87.60±0.54 89.85±0.37 69.17±1.58 90.31±0.31 80.15±0.92 88.43±0.55 70.16±3.00
JoCor 93.70±0.20 92.16±0.26 93.54±0.43 90.73±0.17 93.74±0.12 90.97±0.39 93.32±0.42 89.37±0.56
CoDis 93.75±0.17 92.22±0.42 93.54±0.26 91.29±0.33 93.65±0.14 90.75±0.27 93.42±1.02 90.15±1.29

C
IF

A
R

-1
00

APL 27.36±0.56 22.30±1.31 27.51±0.82 19.56±0.89 28.07±1.43 21.07±0.62 26.96±0.63 18.80±1.99
CDR 31.42±0.74 25.77±0.63 32.88±0.65 23.35±1.62 33.04±1.05 26.74±2.86 32.26±0.94 21.77±2.16
MentorNet 43.15±0.42 37.62±0.89 40.06±0.37 27.17±0.92 42.20±0.30 31.74±0.88 40.54±0.69 33.09±1.53
SIGUA 42.03±0.33 40.53±0.49 36.48±0.47 26.73±0.33 39.21±0.40 32.69±0.36 39.19±0.32 33.51±0.43
Co-teaching 45.17±0.25 40.95±0.52 42.50±0.39 30.07±0.17 44.41±0.41 34.96±0.35 42.23±0.52 35.87±1.47
Decoupling 31.53±0.28 19.09±0.29 35.85±0.35 25.36±0.38 35.01±0.12 24.72±0.47 33.46±0.51 22.53±0.58
Co-teaching+ 35.89±0.70 24.95±0.96 36.16±0.40 24.76±0.46 36.85±0.61 26.06±0.30 36.19±0.57 25.89±0.37
JoCor 45.93±0.21 41.56±0.57 42.12±0.35 30.12±0.65 44.98±0.27 34.23±1.13 44.28±0.59 35.60±0.99
CoDis 45.19±0.31 41.53±0.88 42.63±0.10 30.58±0.30 45.42±0.88 35.35±0.98 44.25±0.26 36.49±0.73

Table 3. Mean and standard deviations of test accuracy (%) on MNIST and F-MNIST with high noise levels over the last ten epochs. The
best result and second best result in each case are highlighted in red and blue respectively.

Method/Noise Sym. 50% Sym. 60% Sym. 70%

M
N

IS
T

APL 84.97±2.97 75.68±1.22 70.11±0.52
CDR 76.85±2.46 57.22±1.92 54.22±0.94
MentorNet 91.14±0.17 90.11±0.37 88.72±0.46
SIGUA 91.35±2.62 88.62±1.93 86.08±6.04
Co-teaching 95.60±0.38 95.44±0.30 94.11±0.38
Decoupling 80.22±0.33 78.36±2.16 74.63±1.66
Co-teaching+ 92.30±0.55 90.77±0.41 86.52±0.89
JoCor 97.14±0.10 96.47±0.46 95.01±0.29
CoDis 97.10±0.04 96.62±0.13 95.39±0.26

F
-M

N
IS

T

APL 76.80±3.21 72.77±4.37 68.39±7.17
CDR 53.41±1.81 45.82±2.77 41.33±3.69
MentorNet 86.51±0.11 85.91±0.44 83.27±0.55
SIGUA 83.39±3.29 79.36±4.54 72.14±4.28
Co-teaching 88.72±0.14 87.92±0.34 85.92±0.72
Decoupling 66.12±2.37 63.77±0.94 57.68±0.49
Co-teaching+ 83.25±0.35 80.92±0.65 77.52±0.73
JoCor 89.16±0.27 87.93±0.61 86.99±0.92
CoDis 89.63±0.30 88.24±0.40 87.15±0.85



Table 4. Mean and standard deviations of test accuracy (%) on noisy long-tailed CIFAR-100 with different noise levels. The test accuracy
is calculated over the last ten epochs. The results are reported over five trials. The best result and second best result in each case are
highlighted in red and blue respectively.

Noise type L-CIFAR-100-1 L-CIFAR-100-2
Setting Asym. 20% Asym. 30% Asym. 40% Asym. 45% Asym. 20% Asym. 30% Asym. 40% Asym. 45%

L-
C

IF
A

R
-1

00

APL 20.93±0.55 17.43±1.11 13.09±0.92 10.50±2.27 22.19±0.74 17.22±0.25 12.06±1.09 10.95±0.88
CDR 30.22±0.65 23.06±1.07 18.77±1.90 13.79±3.54 23.19±1.13 18.15±1.10 14.22±0.14 13.52±0.96
MentorNet 33.66±0.73 28.57±0.75 21.98±1.07 18.32±0.63 27.27±0.65 24.47±1.30 19.81±1.07 16.88±0.99
SIGUA 24.83±0.41 21.41±0.18 16.71±0.65 13.76±0.33 20.83±0.40 19.51±0.59 13.30±0.61 11.61±0.59
Co-teaching 34.30±0.70 29.88±0.44 24.40±0.50 20.39±0.65 32.25±0.47 26.94±0.69 20.14±1.08 18.77±0.67
Decoupling 28.69±0.67 24.16±0.33 19.79±0.40 17.73±0.31 25.90±0.58 21.93±0.33 17.98±0.30 16.26±0.20
Co-teaching+ 28.10±0.31 23.50±0.54 18.78±0.46 16.52±0.26 25.56±0.56 21.55±0.51 17.18±0.61 15.09±0.38
JoCor 35.38±0.71 28.27±0.65 20.73±0.92 18.66±0.65 29.46±0.97 25.07±0.44 19.07±0.70 16.26±0.52
CoDis 34.92±0.45 31.14±0.34 24.75±0.73 21.26±0.75 33.15±0.13 28.11±0.16 22.41±0.60 20.23±0.55

Table 5. Mean and standard deviations of test accuracy (%) on two class-imbalanced noisy datasets with different noise levels. ResNet-34
is used. The test accuracy is calculated over the last ten epochs. The results are reported over five trials. The best result and second best
result in each case are highlighted in red and blue respectively.

Noise type Asym. 20% Asym. 30% Asym. 40% Asym. 45%

SV
H

N

APL 92.09±0.15 87.30±0.32 78.64±0.50 65.76±1.46
CDR 91.06±1.09 85.73±1.95 75.44±2.32 63.77±2.79
MentorNet 92.15±0.53 86.71±0.26 76.05±4.40 60.80±3.50
SIGUA 85.49±0.91 77.65±0.69 50.80±2.77 48.75±3.80
Co-teaching 95.43±0.08 93.95±0.20 91.03±0.46 88.20±3.17
Decoupling 92.17±0.52 85.17±0.93 82.19±0.77 77.83±1.62
Co-teaching+ 93.03±1.24 88.97±1.07 85.73±1.21 80.29±1.31
JoCor 93.93±0.28 89.12±2.65 70.73±4.11 52.59±3.61
CoDis 95.73±0.11 95.44±0.19 94.52±0.40 93.92±0.37
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APL 80.17±0.62 75.33±2.18 71.65±1.75 56.92±1.06
CDR 79.36±0.58 76.22±0.39 70.44±1.06 53.92±1.75
MentorNet 80.91±1.54 77.43±0.59 63.16±7.17 52.05±2.77
SIGUA 77.58±0.48 71.20±1.35 60.24±2.17 36.82±3.99
Co-teaching 83.14±0.26 81.83±0.52 72.13±0.76 55.93±3.92
Decoupling 78.86±0.34 74.69±0.20 67.11±0.58 52.17±2.95
Co-teaching+ 77.76±0.69 73.32±0.65 69.82±1.73 51.80±1.95
JoCor 83.47±0.26 80.43±0.46 70.77±1.94 50.45±3.05
CoDis 83.59±0.15 82.37±0.61 73.06±0.19 57.28±1.35

and we use a simple CNN as did in [9]. In addition, we do
not employ other techniques, e.g., data augmentations.

Experiments with different networks. Before this, we use
a 9-layer CNN for SVHN and CIFAR-10. To show that our
method is robust to network structures, we use ResNet-34
and MobileNet V2 [5] for these two datasets. The results
are provided in Tables 5 and 6 respectively. We can see that
with different network structures, CoDis exhibits superior
robustness to multiple baselines.

Experiments with data augmentation. Before this, we
verify the effectiveness of our method without data augmen-
tation, as did in [2, 7]. Here, we exploit data augmentation
that is commonly used. That is, we perform data augmen-
tation by horizontal random flips and 32×32 random crops
after padding 4 pixels on each side. The networks ResNet-
34 and MobileNet V2 are employed for SVHN. The results
are provided in Table 7. As can be seen, when data augmen-
tation is used, CoDis still works well in all cases.

C.3. Hyperparameter Sensitivity Analysis

Analysis of α. It is easy to analyze the role of the used
divergence strategy by comparing our method with Co-
teaching. As we employ α to keep divergence of two deep

networks, we the algorithm stability with different values of
α. The experiments are conducted with noisy datasets with
symmetric noise. Implementation details are kept the same
as above. The results in Figure 1 demonstrate the stability
of our method with different α. The ablation study about α
on imbalanced noisy datasets is provided in Figure 2. We
can see that in the certain value range, our method is robust
to the choice of α. The results mean that our method can be
easy to apply, without sophisticated hyperparameter tuning.

Analysis of Tk. Here we exploit MNIST. Following the
original paper of Co-teaching, we fix Tmax=200 and set
Tk=5, 10, 15 respectively. Results are provided in Table 8.
As can be seen, our method is not sensitive to varying Tk.

Analysis of Tmax. We fix Tk=10 and set Tmax=225, 250, 275
respectively. Results are shown in Table 9, which demon-
strate the stability of CoDis to the changes of Tmax.

C.4. Experiments with Label Precision

We provide comparison results about the label precision.
Here we compare CoDis with Co-teaching that also em-
ploys the cross-update way, where MNIST is used. We re-
port results in Table 10. As can be seen, the label precision
of CoDis is higher than Co-teaching, especially when train-



Table 6. Mean and standard deviations of test accuracy (%) on two class-imbalanced noisy datasets with different noise levels. MobileNet
V2 is used. The test accuracy is calculated over the last ten epochs. The results are reported over five trials. The best result and second
best result in each case are highlighted in red and blue respectively.

Noise type Asym. 20% Asym. 30% Asym. 40% Asym. 45%

SV
H

N

APL 92.06±0.17 85.22±0.39 73.14±1.19 68.74±1.16
CDR 91.75±1.04 83.15±1.28 67.84±2.40 63.33±3.64
MentorNet 92.37±0.22 86.05±2.54 72.34±2.35 62.14±4.24
SIGUA 82.17±0.34 70.82±3.41 40.77±3.96 40.52±4.90
Co-teaching 95.18±0.11 94.11±0.19 84.46±3.63 73.47±4.16
Decoupling 92.52±0.17 85.13±0.65 74.73±2.65 65.25±1.04
Co-teaching+ 93.03±1.24 88.92±0.45 76.86±0.61 64.38±1.13
JoCor 93.77±0.15 82.93±1.29 73.11±4.74 62.18±3.70
CoDis 95.59±0.09 95.45±0.12 92.13±0.20 83.16±2.32

C
IF

A
R

-1
0

APL 80.17±0.33 76.33±0.62 68.73±2.06 53.92±1.50
CDR 79.09±0.32 74.88±1.09 65.85±0.92 50.11±2.05
MentorNet 79.65±0.76 76.45±0.30 65.18±1.24 51.24±3.06
SIGUA 78.11±0.69 70.11±0.50 60.20±1.84 40.27±3.96
Co-teaching 82.47±0.14 81.09±0.32 72.90±0.22 53.12±2.21
Decoupling 77.82±0.47 75.22±0.59 67.28±1.76 51.28±3.55
Co-teaching+ 78.49±0.41 75.10±1.27 66.28±1.42 51.75±2.87
JoCor 82.13±0.27 79.74±0.24 65.45±6.93 51.80±3.32
CoDis 82.60±0.22 81.25±0.27 73.05±0.19 54.50±1.06

Table 7. Mean and standard deviations of test accuracy (%) on noisy SVHN with different noise levels. Data augmentation is employed.
The test accuracy is calculated over the last ten epochs. The results are reported over five trials. The best result and second best result in
each case are highlighted in red and blue respectively.

Noise type Asym. 20% Asym. 30% Asym. 40% Asym. 45%

R
es

N
et

-3
4

APL 95.06±0.07 92.45±0.18 90.45±0.73 88.84±1.75
CDR 93.95±0.23 86.24±0.66 82.34±3.65 70.54±7.34
MentorNet 92.60±0.19 89.08±0.34 78.84±3.14 65.54±1.94
SIGUA 92.15±0.62 86.39±1.36 73.68±2.44 65.63±5.81
Co-teaching 95.66±0.05 93.87±0.24 91.22±0.66 90.33±2.33
Decoupling 93.06±0.07 91.07±0.54 89.72±0.99 86.03±2.26
Co-teaching+ 95.21±0.04 94.47±0.90 94.12±0.39 89.78±5.23
JoCor 94.10±0.06 91.08±0.32 80.19±3.58 63.74±2.69
CoDis 96.50±0.07 96.10±0.06 95.47±0.14 95.05±0.92

M
ob

ile
N

et
V

2

APL 94.33±0.12 92.65±0.18 90.37±0.83 89.67±1.95
CDR 94.02±0.67 91.88±0.77 86.73±3.77 75.65±6.72
MentorNet 92.77±0.02 89.01±0.71 74.71±3.35 65.18±1.22
SIGUA 89.73±2.14 85.77±0.91 70.67±3.14 62.63±2.69
Co-teaching 95.59±0.11 94.17±0.18 91.88±0.34 84.90±5.20
Decoupling 95.13±0.14 93.81±0.36 91.38±0.60 86.70±2.95
Co-teaching+ 95.54±0.24 95.06±0.10 94.77±0.28 89.38±4.40
JoCor 94.13±0.40 90.94±0.21 72.43±6.44 65.34±2.34
CoDis 96.50±0.09 95.86±0.13 95.32±0.20 94.83±0.30

Table 8. The sensitivity analysis of the parameter Tk.
Noise Setting Tk=5 Tk=10 Tk=15

MNIST+Sym. 40% 98.25±0.14 98.33±0.09 98.33±0.05
MNIST+Asym. 40% 99.03±0.03 99.01±0.14 98.82±0.08

Table 9. The sensitivity analysis of the parameter Tmax.
Noise Setting Tmax=225 Tmax=250 Tmax=275

MNIST+Sym. 40% 98.23±0.02 98.19±0.04 98.12±0.04
MNIST+Asym. 40% 98.89±0.20 99.01±0.12 98.91±0.14
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Figure 1. Illustrations of the hyperparameter sensitivity for our method. The error bar for standard deviation in each figure has been shaded.

ing data are class-imbalanced (Asym. 20%).
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Figure 2. Illustrations of the hyperparameter sensitivity for the proposed method on four imbalanced noisy datasets. The error bar for
standard deviation in each figure has been shaded.

Table 10. Comparing CoDis to Co-teaching about label precision (%) that is calculated over the last ten epochs.
Sym. 20% Pair.20% Ins. 20% Asym.20%

Co-teaching 94.62±0.24 92.65±0.40 94.66±0.08 94.95±0.16
CoDis 95.93±0.16 95.01±0.07 94.92±0.13 99.24±0.02
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