
A. Supplementary Theoretical Results
Lemma 1 Suppose Sf (x) fulfills the Tsybakov condition on instance-label dependence for constants C1, λ1 > 0, and t0 ∈
(0,m]. Let κf (h,x, ȳ) := ˆ̄Sf
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Lemma 1 claims that, even though with noisy multiple labels, there is a guaranteed success rate to make proper label
corrections by instance-label dependency.

B. Proofs of Theoretical Results
B.1. Proof of Theorem 1

Proof 1 For the case (1),
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ˆ̄Sȳ(x)

ˆ̄Sy∗(x)
< δ̂

]
(1)

≤ P

[
h∗(x) = ȳ,
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For the first term,
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ˆ̄Sȳ(x)/δ̂ −

∑
lj∈y∗

∑
i ̸=j TijP(li|x)

τ
+

3ϵ

τ

 (13)

≤ P

Sy∗(x) ≥ Sbx(x), Sy∗(x) ≤
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Therefore, we have
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B.2. Proofs of Lemma 1 and Corollary 1

We first prove Lemma 1. Lemma 1 uses the similar proof skill of Theorem 3 of [65]. We extend it into multi-label
classification.

Proof 2 For the case (1),
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ȳ(x)

ˆ̄Sf
y∗(x)

< δ̂

]
(18)

= P

[
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ˆ̄Sf
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The case (2) shares the similar proof with the case (1). Specifically,
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The proof of Lemma 1 is completed. Combining Lemma 1 and Theorem 1, Corollary 1 can be achieved.



C. Related Literature
C.1. Procedure of ADDGCN

ADDGCN is the preparation technology of our HLC. We detail ADDGCN [57] as follows.

SAM. Given an example (x,y), we feed x into a deep network and obtain its corresponding feature map x′. SAM first
calculates label-specific activation maps M = [m1, . . . ,mq] by using class-activation-mapping [66]. Then, M is used
to convert the feature map x′ into the content-aware class-label representations C = [c1, . . . , cq]. Let [q] = {1, . . . , q}.
Mathematically, for k ∈ [q], we have ck = m⊤

k x
′. That is, ck selectively aggregate features related to its specific class label

k.

GCNM. With the content-aware class-label representations C achieved by SAM, GCNM is introduced to adaptively trans-
form their coherent correlation for multi-label classification. Specifically, GCNM consists of two parts: a static GCN and a
dynamic GCN. The representations C are taken by GCNM as input node features and sequentially fed into the static GCN
and dynamic GCN.

The single layer of the static GCN is defined as H = LReLU(AsCWs), where As denotes the correlation matrix shared
for all instances, Ws denotes state-update weights, and LReLU(·) denotes the LeakyReLU activation function [53]. Besides,
As and Ws are randomly initialized and learned by gradient decent during training. The dynamic GCN transforms H. Its
correlation matrix Ad is constructed dynamically dependent on input features H. Namely, each examples have different Ad.
Formally, the output of the dynamic GCN is formulated as Z = LReLU(AdHWd), where Wd are state-update weights.
Later, we use Ad(x) to denote the correlation matrix of x, where Ad(x)jk = P̂(lk|lj ,x) for any j, k ∈ [q].

Classification and Loss. The label-specific activation map M = [m1, . . . ,mq] and final category representation Z =
[z1, . . . ,zq] are employed simultaneously for multi-label classification. Specifically, we use global spatial pooling on M to
obtain a score vector sm = [sm1 , . . . , smq ]. Besides, each category representation Z is put into a binary classifier to obtain
another score vector sz = [sz1, . . . , s

z
q ]. We simply average two score vectors to predict more reliable results. The aggregated

score vector is denoted as s = [s1, . . . , sq] = [(sm1 + sz1)/2, . . . , (s
m
q + szq)/2]. The Sigmoid activation function σ(·) is then

used on s for probabilistic interpretation. That is to say, σ(s) = [σ(s1), . . . , σ(sq)] = [P̂(l1|x), . . . , P̂(lq|x)]. The binary
cross-entropy loss is exploited for the updates of all weights, i.e., L =

∑
li∈y log(σ(si)).

Given a multi-label example (x, ȳ), for the two dependences Ŝf and Ŝl, based on σ(s) and Ad(x) achieved by learning
with multiple noisy labels, they can be estimated as
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2

[
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]
. (39)

C.2. Related Literature on Multi-Class Classification with Noisy Labels

Multi-class classification with noisy labels can date back to three decades ago [1], and keeps vibrant in recent years [11].
There is a large body of recent works that include but do not limit to the estimation of the noise transition matrix [33, 12,
37, 49, 70, 24, 61, 58], confident sample selection [45, 54, 55, 47, 15, 29, 38, 31], robust loss function design [26, 67, 28, 8],
implicit/explicit regularization [14, 25, 27, 20, 16], and the integration of diverse techniques [30, 19, 21, 32]. We refer readers
to [39, 11] for comprehensive review on multi-class classification with noisy labels.

In addition, the methods belonging to label correction have attracted much attention in multi-class classification with noisy
labels [40, 65, 62]. Generally speaking, this kind of methods relies the prediction of a classifier trained on the noisy dataset,
which recalibrates labels to the mislabeled data. Benefiting from the memorization effect of deep networks [2], the prediction
is a good indicator to determine the clean label of mislabeled data. The dataset after label correction is then less noisy, which
brings better generalization. However, few label-correction methods are investigated for multi-label classification with noisy
labels, which is much more challenging than multi-class classification with noisy labels [23].

C.3. Related Literature on Multi-Label Classification with Clean & Noisy Labels

We briefly review works on multi-label classification with clean labels. If there is no confusion, we directly state multi-
label classification. Multi-label classification has been studied for many years [60, 22, 59, 18, 6, 50]. In consideration of the
increasing needs of today’s big data, lots of methods based on deep learning are proposed [69, 36, 9, 63, 56, 3, 68, 43, 46, 10,
4]. In addition to the above works, some works [5, 57] claim that the label dependence can be used to enhance the learning
of the instance-label dependence. They exploit graph convolutional networks to capture the -label dependence and inject



the captured information into multi-label classification, following promising classification performance. Recently, imperfect
training data make us consider the side-effect of noisy labels in multi-label classification. Till now, there are relatively few
methods specifically targeting this realistic problem. More advanced methods need to be excavated.

Normally, these methods perform an overall model adjustment to combat noisy labels. However, these methods highly rely
on additional information except for provided training data with noisy labels. For example, partial methods [13, 42, 41, 34]
learn an overall transition between noisy and clean labels to handle noisy labels, where a small dataset with clean labels is
relied to guide the transition learning. Partial methods [64] introduce overall semantics-based regularization on training data
to relieve the model’s overfitting to noisy labels, where semantic label embeddings are injected with large-scale predefined
word embeddings [35, 7]. Although the additional information is helpful, in many actual scenarios, it is luxurious or not
feasible at all. Without the additional information, these methods become weak in multi-label classification with noisy
labels [64], which greatly limits their practical applications [23].

C.4. Setting Difference between Multi-Label Classification with Noisy Labels and Partial Multi-Label
Learning

It should be noted that the problem settings of multi-label classification with noisy labels and partial multi-label learn-
ing [51, 17] are different. Partial multi-label learning deals with the problem where each instance is assigned with a candidate
label set, which contains multiple relevant labels and some irrelevant labels. The size of the candidate label set is usually
much smaller than the size of label space. We need to detect the relevant labels for training. However, for our problem, there
is no small candidate label set for reference, where we can only observe the whole label space. Intuitively, the methods in
partial multi-label learning could be applied to multi-label classification with noisy labels. That is, we can identify some
clean labels from noisy labels for training. However, this paradigm is inefficient, since only fractional labels are considered.
Additionally, it is rather hard to accurately determine the number of identified labels for each instance.

D. Supplementary Experimental Settings
D.1. The Details of Baselines

In the main paper, we consider three types of baselines in experiments. Here, we detail the baselines.
1. Type-I baselines are designed for multi-label classification without considering noisy labels, which include

• CSRA [69] proposes simple and effective residual attention for multi-label learning. CSRA generates class-specific features
for different labels by using spatial attention scores, and then combines them with the class-agnostic average pooling
features.

• ADDGCN [57] proposes to exploit a semantic attention module and a GCN module for multi-label classification. As we
discussed in the main paper, ADDGCN is the preparation technology of our HLC.

2. Type-I baselines are designed for multi-class classification with noisy labels, which include

• APL [26] combines two mutually reinforcing robust loss functions. For this baseline, we employ its combination of
normalized BCE and MAE for comparison. The trade-off hyperparameter for the combinations of NBCE and MAE is set
to 1.

• CDR [48] handles multi-class noisy labels using network pruning. A parameter judgment criteria is proposed to distinguish
the critical/non-critical parameters for memorizing clean labels. The non-critical ones are forbidden to update, which
mitigates the overfitting to mislabeled data.

• JOINT [40] shares a similar philosophy compared with our method, i.e., label correction. It uses a joint optimization
framework to handle noisy labels. The pseudo labels are generated dynamically by using the network’s prediction to
improve robustness. Meanwhile, regularizations about the class prior and entropy of prediction probabilities are used. In
experiments, we utilize the hard-label version of JOINT [40].

3. Type-III baselines are designed for multi-label classification with noisy labels, which include:

• WSIC [13] consists of a clean net and a residual net. The aim is to learn a mapping from feature space to clean label
space and a residual mapping from feature space to the residual between clean labels and noisy labels respectively. For fair
comparison with our method, we only provide noisy training examples to WSIC.



• CCMN [52] establishes unbiased estimators with error bounds for solving the problem of multi-label learning with noisy
labels, and further prove that the estimators are consistent with commonly used multi-label loss functions under some
conditions.

4. The simple baseline that trains deep models on multi-label noisy datasets directly:

• BCE [60] uses the binary cross-entropy loss to train deep models in noisy datasets, without considering the side-effect of
mislabeled data for generalization.

D.2. The Details of the Label Transition Matrix

In this paper, we consider both symmetric and pairflip cases for the generation of noisy labels. Specifically, if the overall
noise rate is ϱ, the label transition matrix for symmetric cases are defined as

Sym. ϱ: T :=


1− ϱ ϱ

q−1 . . . ϱ
q−1

ϱ
q−1

ϱ
q−1 1− ϱ ϱ

q−1 . . . ϱ
q−1

...
. . .

...
ϱ

q−1 . . . ϱ
q−1 1− ϱ ϱ

q−1
ϱ

q−1
ϱ

q−1 . . . ϱ
q−1 1− ϱ


q×q

. (40)

The label transition matrix for pariflip cases are defined as

Pair. ϱ: T =


1− ϱ ϱ . . . 0 0
0 1− ϱ ϱ . . . 0
...

. . .
...

0 . . . 0 1− ϱ ϱ
ϱ 0 . . . 0 1− ϱ


q×q

. (41)

E. Supplementary Experimental Results
In the main paper, we report results based on the performance of the last epoch during training, as did in [11, 44, 45, 19].

Here, to make comparison more comprehensive, we report results on noisy Pascal-VOC 2007 based on the best performance
achieved during training. The results are provided in Table 1. Due to the memorization effect of deep networks [2], the
networks would first memorize clean training data and then noisy training data. Therefore, in the early training, all methods
could achieve good performance. We compared HLC with other advanced methods. Specifically, for mAP, although HLC
does not always achieve the best results like the results in the main paper, the results are still competitive. For OF1 and CF1,
HLC outperforms the other methods consistently.

It is worth mentioning that, the results in the main paper are much lower than the results in Table 1 in some cases. The
experimental phenomenon means that one method severely overfits training data with incorrect labels as training progresses,
which is pessimistic. Therefore, we should strive to design more robust methods to address the problem of multi-label
classification with noisy labels. In this paper, we try and give a potential method, which outperforms baselines clearly. More
efforts are expected to be put in by the community.

References
[1] Dana Angluin and Philip Laird. Learning from noisy examples. Machine Learning, 2(4):343–370, 1988. 4
[2] Devansh Arpit, Stanisław Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S Kanwal, Tegan Maharaj, Asja

Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look at memorization in deep networks. In ICML, pages 233–242, 2017. 4,
6

[3] Tianshui Chen, Liang Lin, Xiaolu Hui, Riquan Chen, and Hefeng Wu. Knowledge-guided multi-label few-shot learning for general
image recognition. Transactions on Pattern Analysis and Machine Intelligence, 2020. 4

[4] Tianshui Chen, Muxin Xu, Xiaolu Hui, Hefeng Wu, and Liang Lin. Learning semantic-specific graph representation for multi-label
image recognition. In ICCV, pages 522–531, 2019. 4

[5] Zhao-Min Chen, Xiu-Shen Wei, Xin Jin, and Yanwen Guo. Multi-label image recognition with joint class-aware map disentangling
and label correlation embedding. In ICME, pages 622–627, 2019. 4



Table 1. Comparisons with advanced methods on noisy Pascal-VOC 2007. The mean and standard deviation of the best results (%) during
training are presented.

Metrics Methods / Noise Sym. 30% Sym. 40% Sym. 50% Pair. 20% Pair. 30% Pair. 40%

mAP ↑

BCE 82.01±0.61 80.50±0.62 76.80±0.31 80.97±0.24 75.95±1.12 65.54±2.67
CSRA 83.15±0.08 80.39±1.17 77.93±2.73 82.36±0.35 76.02±1.58 65.38±1.61
ADDGCN 81.70±0.96 80.29±0.44 74.22±2.86 80.33±1.50 74.92±2.64 63.11±1.80
APL 82.13±1.44 79.92±0.63 76.68±2.47 82.20±0.09 76.02±1.80 66.92±2.09
CDR 82.35±1.17 78.33±1.04 77.01±1.61 81.00±0.20 76.37±1.04 66.21±2.35
JOINT 82.12±0.55 81.00±0.39 76.84±1.12 81.33±0.60 76.77±0.55 66.50±1.86
WSIC 82.17±0.19 78.14±1.06 77.25±0.90 81.06±1.06 75.22±1.37 65.88±2.80
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