
Window-Based Early-Exit Cascades for Uncertainty Estimation
Supplementary Material

Guoxuan Xia
Imperial College London
g.xia21@imperial.ac.uk

Christos-Savvas Bouganis
Imperial College London

christos-savvas.bouganis@imperial.ac.uk

1. Additional Setup Details
Training. We train two families of computationally effi-
cient CNNs for image classification on ImageNet-1k [11]:
EfficientNet [13] and MobileNet-V2 [12]. For Efficient-
Net, we scale width, depth and resolution as the original
authors [13] from B0→B4. For MobileNet-V2 we use the
scalings in Tab. 1, which are taken from the Keras github
repository.1 For each model we train a Deep Ensemble size
M = 2 using random seeds {1,2} (everything is the same
between ensemble members other than the random seed).
This results in 10 individual ensembles, 5 composed of
EfficientNets and 5 composed of MobileNet-V2s.

input resolution 160 192 224 224 224
width factor 1.0 1.0 1.0 1.3 1.4
Table 1. MobileNet-V2 scaling used in experiments.

We train all models for 250 epochs on ImageNet-1k,
and hold out a random subset of 50,000 images from the
training set for validation (we then evaluate on the original
validation set). We train using standard cross entropy. We
use stochastic gradient descent with a learning rate of 0.2,
weight decay of 4e-5 and a batch size of 1024 for all models
other than EfficientNet-B4, for which we use a learning
rate of 0.1 and batch size of 512 due to GPU memory
constraints (following the scaling recommendations in
[2]). We use cosine learning rate decay with a 5 epoch
linear warmup.2 We use default random resize-cropping
and random horizontal flipping for data augmentation, and
images are scaled using bicubic interpolation.

We train all of our models using PyTorch [9] and
Lightning [1] distributed over 8 NVIDIA V100 32GB
GPUs using Automatic Mixed Precision.3 Training

1https://github.com/keras-team/keras/blob/
master/keras/applications/mobilenet_v2.py.

2This is a combination of the hyperparameters from https:
//github.com/d-li14/mobilenetv2.pytorch and the scaling
approaches recommended in [2].

3https://developer.nvidia.com/
automatic-mixed-precision

and evaluation code can be found here: https:
//github.com/Guoxoug/window-early-exit.
Please follow the instructions in the README.md file in
order to reproduce our results and plots.

Setting windows. In general, we find τ on the validation
set and then vary [t1,t2] by placing them at increasing sym-
metric percentiles on either side of τ . If either side of the
window hits either the zeroth or 100th percentile, then the
expansion will only apply to the other side, e.g. if τ is set at
TPR=95% then there is only room for 5% (of ID data) on
the side more uncertain than τ . As mentioned previously,
we leave further optimisation of [t1,t2] to future work.

Packed Ensembles. For the experiments involving
Packed Ensembles we use the same ResNet-50 models as
those in Tab. 2 of [6], with weights kindly provided by
Laurent et al. [6]. Implementation is the same as in the
main experiments, and we treat Packed Ensemble outputs
in the same way as (non-adaptive) Deep Ensembles.

2. A Note on Uncertainty Scores U
We remark that our approach is dependent on the

compatibility of the uncertainty scores U (1),U (2),...,U (M)

between different exits, as ultimately a single τ is used
for the downstream uncertainty task. We find that in our
experiments, simply using the same score method (e.g. En-
ergy [8]) across all exits is sufficient. However, in a similar
scenario, Lin et al. [7] find it necessary to perform an ad-
ditional score normalisation step. Although this may seem
like common sense, we remark that we don’t expect our ap-
proach to work if different exits use different score methods
(e.g one exit uses MSP and another uses Energy), as these
score methods may take very different absolute values.

3. Additional Early-Exit Architectures
In addition to MSDNet [3], we also evaluate on GFNet

[17] and the ViT-based DVT [10] in Fig. 1. For all early-
exit architectures we use publically available pretrained

https://github.com/keras-team/keras/blob/master/keras/applications/mobilenet_v2.py
https://github.com/keras-team/keras/blob/master/keras/applications/mobilenet_v2.py
https://github.com/d-li14/mobilenetv2.pytorch
https://github.com/d-li14/mobilenetv2.pytorch
https://developer.nvidia.com/automatic-mixed-precision
https://developer.nvidia.com/automatic-mixed-precision
https://github.com/Guoxoug/window-early-exit
https://github.com/Guoxoug/window-early-exit

2 3
Average MACs 1e9

45

50
Co

v@
5

MSDNet
exits {2,3,5}
window-based
early exit

1.5 2.0
Average MACs 1e9

50

52

Co
v@

5

GFNet
DenseNet-121
exits {2,3,4}
window-based
early exit

2.5 5.0 7.5
Average MACs 1e9

55
60
65

Co
v@

5

DVT
T2T-ViT-14
exits {1,2,3}
window-based
early exit

Figure 1. SC results for different early-exit architectures using 3
exits. Top: MSDNet, middle: GFNet, bottom: DVT. We achieve
more efficient trade-offs compared to using individual exits.

weights.4 For MSDNet we use the version of the model
designed for ImageNet with step=7, and experiment on a
subset {2,3,5} of the five available exits. For GFNet we
use the model built on DenseNet-121 and exits {2, 3, 4}.
For DVT we use the model built on T2T-ViT-14 and all 3
exits. The percentiles used for [t1,t2] are listed in Tab. 2:

Early-Exit Arch. %±τ (1) for [t1,t2](1) %±τ (2) for [t1,t2](2)

MSDNet [10,15,20,25,30,35] [10,10,10,10,10,10]
GFNet [10,15,20,25,30,35] [10,10,10,10,10,10]
DVT [10,15,20,30,35,40,45] [0,0,10,10,10,15,20]

Table 2. Window widths for early-exit architectures.

For all three specialised early-exit architectures we
achieve a better uncertainty-computation trade-off com-
pared to using individual exits, validating our approach.

4. Additional Exit Policy Comparisons
We show comparisons between the single-threshold

policy, and our window-based policy for OOD detection
(FPR@95↓, Openimage-O, α = 0.5). For the single-
threshold and non-adjusted window approach we set t and
[t1, t2] based on the percentage of pID passed on to the
next cascade stage. For the adjusted window we set [t1,t2]
according to percentiles measured on pmix instead.

4https://github.com/kalviny/MSDNet-PyTorch
https://github.com/blackfeather-wang/
GFNet-Pytorch
https://github.com/blackfeather-wang/
Dynamic-Vision-Transformer

1.0 1.2 1.4 1.6 1.8 2.0
Average MACs 1e9

53.5

54.0

54.5

55.0

55.5

56.0

Op
en

im
ag

e-
O

FP
R@

95

20% on pID

± 10% on pID

± 10% on pmix

single threshold
window (ours)
adjusted window (ours)

Figure 2. Comparison of OOD detection efficiency for different
exit policies. The ratio of ID:OOD data is 1:1 (α = 0.5). Using
a single threshold is inefficient compared to using a window.
Adjusting [t1, t2] using statistics from pmix significantly reduces
the slowdown caused by distributional shift (if the window is set
on pID). We use an EfficientNet-B2 ensemble with M=2.

Similarly to SC, Fig. 2 shows that the single-threshold
approach only improves after t (the exit threshold) passes
over τ (the detection threshold). However, this happens
earlier as the operating point TPR=95% happens to be
closer to the starting point of the single-threshold sweep (it
starts from most uncertain). Our window-based approach
more efficiently improves OOD detection.

Different specific exit policies are also marked. It can
be seen that setting the window [t1, t2] according to pmix
rather than pID significantly reduces slowdown caused by
distribution shift. Setting [t1,t2] to ±10% around τ on pID
leads to ∼50% of samples from pmix passing through to the
second stage. Note that setting [t1, t2] at ±10 percentiles
around TPR=95% on ID data only allows 15% of ID data
through as the window caps out on one side.

5. Additional Selective Classification Results
We include additional SC results at two more operating

points, Risk@50↓ and Cov@10↑ (Fig. 4), which represent,
compared to the main results, a lower coverage requirement
and a higher risk tolerance respectively. The results are
similar to those in the main paper, showing that cascades are
able to achieve efficient uncertainty estimation compared to
model scaling over a range of different operating thresholds.

6. Accuracy-Computation Results
Fig. 5 shows the accuracy-computation trade-off using

single-threshold cascades for EfficientNet and MobileNet-
V2. We pass the most uncertain 20% of samples from the
1st model to the second cascade stage. The results are un-
surprisingly similar to those in [16], i.e. ensembles are less
efficient than single models in the low-compute region, but
outperform them for higher computation levels. Cascades
then allow ensembles to become more efficient for all levels
of compute. We note the baseline accuracy of our Efficient-

https://github.com/kalviny/MSDNet-PyTorch
https://github.com/blackfeather-wang/GFNet-Pytorch
https://github.com/blackfeather-wang/GFNet-Pytorch
https://github.com/blackfeather-wang/Dynamic-Vision-Transformer
https://github.com/blackfeather-wang/Dynamic-Vision-Transformer

ImageNet-1k
#train: 1231167
#valid: 50000
#test: 50000

Openimage-O
#test: 17632

iNaturalist
#test: 10000

Figure 3. Example images from each image dataset used, with #samples in each split.

70

75

80

Co
v@

10

EfficientNet

60

65

70

MobileNet-V2

109 1010

Average MACs

2.5

3.0

3.5

4.0

Ri
sk

@
50

108 109

Average MACs

4

5

6

Selective Classification MSP
single model
ensemble

window-based cascade (ours)

Figure 4. SC–computation comparison for single models, en-
sembles and window-based cascades, on additional operating
thresholds. Results tell the same story as the main paper – cascades
are able to achieve the best uncertainty-computation trade-off.

Nets is lower than in [16] as we train them for fewer epochs
with a simpler recipe and larger validation set, however, we
do not believe this affects the takeaways from our results.

7. Additional Dataset Information
We include randomly sampled example images from the

datasets used in this work: ImageNet-1k [11], Openimage-
O [5, 15], and iNaturalist [4, 14]. We also show information
about the number of samples in each dataset split (Fig. 3).
The OOD datasets are recently released high-resolution
benchmarking datasets. They aim to move vision-based
OOD detection evaluation beyond CIFAR-scale images
into more realistic image-classification scenarios. The
samples in each dataset have been carefully chosen to be
semantically disjoint from the label space of ImageNet-
1k. Openimage-O contains a wide range of classes like

0.0 2.5 5.0 7.5
Average MACs 1e9

76

78

80
to

p
1

ac
c.

EfficientNet

0.5 1.0
Average MACs 1e9

70

72

74

76
MobileNet-V2

Top 1 Accuracy
single model
ensemble

single-threshold cascade

Figure 5. Accuracy–computation comparison for single models,
ensembles and single-threshold cascades.

ImageNet, whilst iNaturalist contains botanical images.

8. Acknowledgements

Guoxuan Xia is funded jointly by Arm ltd. and EPSRC.
We would like to thank Alexandros Kouris, Pau de Jorge
and Francesco Pinto for their helpful discussions and
feedback. We would also like to thank Yulin Wang,
Olivier Laurent and Gianni Franchi for kindly providing
pre-trained weights for our experiments.

References
[1] William Falcon and The PyTorch Lightning team. PyTorch

Lightning, 3 2019. 1
[2] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch
sgd: Training imagenet in 1 hour. ArXiv, abs/1706.02677,
2017. 1

[3] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens
van der Maaten, and Kilian Q. Weinberger. Multi-scale
dense networks for resource efficient image classification.
In ICLR, 2018. 1

[4] Rui Huang and Yixuan Li. Mos: Towards scaling out-

of-distribution detection for large semantic space. 2021
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8706–8715, 2021. 3

[5] Ivan Krasin, Tom Duerig, Neil Alldrin, Vittorio Ferrari,
Sami Abu-El-Haija, Alina Kuznetsova, Hassan Rom, Jasper
Uijlings, Stefan Popov, Andreas Veit, Serge Belongie, Victor
Gomes, Abhinav Gupta, Chen Sun, Gal Chechik, David Cai,
Zheyun Feng, Dhyanesh Narayanan, and Kevin Murphy.
Openimages: A public dataset for large-scale multi-label
and multi-class image classification. Dataset available from
https://github.com/openimages, 2017. 3

[6] Olivier Laurent et al. Packed ensembles for efficient
uncertainty estimation. In ICLR, 2023. 1

[7] Ziqian Lin, Sreya Dutta Roy, and Yixuan Li. Mood:
Multi-level out-of-distribution detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 15313–15323, June 2021. 1

[8] Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li.
Energy-based out-of-distribution detection. Advances in
Neural Information Processing Systems, 2020. 1

[9] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019. 1

[10] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu,
Jie Zhou, and Cho-Jui Hsieh. Dynamicvit: Efficient
vision transformers with dynamic token sparsification.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wort-
man Vaughan, editors, Advances in Neural Information
Processing Systems, 2021. 1

[11] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael S. Bernstein, Alexander C. Berg,
and Li Fei-Fei. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision,
115:211–252, 2015. 1, 3

[12] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
4510–4520, 2018. 1

[13] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model
scaling for convolutional neural networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research,
pages 6105–6114. PMLR, 09–15 Jun 2019. 1

[14] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui,
Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and
Serge Belongie. The inaturalist species classification and
detection dataset, 2017. 3

[15] Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang.

Vim: Out-of-distribution with virtual-logit matching. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022. 3

[16] Xiaofang Wang, Dan Kondratyuk, Eric Christiansen,
Kris M. Kitani, Yair Movshovitz-Attias, and Elad Eban.
Wisdom of committees: An overlooked approach to faster
and more accurate models. In International Conference on
Learning Representations, 2022. 2, 3

[17] Yulin Wang et al. Glance and focus: a dynamic approach
to reducing spatial redundancy in image classification. In
NeurIPS, 2020. 1

