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A. Network Architecture

OccNeRF renders humans through the regression MLP
network F(·). We designed this network by following the
architecture suggested by NeRF [5]. Specifically, there are
8 linear layers in this network, each with 256 neurons and
the ReLU non-linearity. The input to this network is the
same as the input described in Equation 9. For each input
tensor, this network outputs two values indicating the den-
sity and radiance at the corresponding position. The density
values σ are returned at the end of the fourth linear layer,
while the radiance values c are returned at the end of the
eighth linear layer. There is also a skip connection, which
concatenates the input to the activation of the fifth layer.
The architecture is outlined in Figure 1.
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Figure 1. Network architecture for the regression MLP F(·) used
in OccNeRF.

B. Definition of Occlusion

For simulated occlusions (ZJU-MoCap), we define the
extent of occlusion as 1 − #occluded pixels

#valid pixels . For real-world
occlusions (OcMotion), since there is no reference for the
occluded body, we rely on 2D projections of the GT SMPL
mesh: 1− #visible pixels ∩ SMPL pixels

#SMPL pixels . The occlusion extent for
different OcMotion videos are as follows:

*Correspondence to xtiange@stanford.edu

Video Mild Severe A B
Where? Sec. 4 Sec. 4 Supp. F Supp. F
Extent 17% 79% 55% 6%

Table 1. Occlusion extents for OcMotion videos.

C. Relevance to SMPL Methods
Implicit modeling (NeRF) and explicit modeling

(SMPL) are two distinct approaches. NeRF methods pro-
vide high-fidelity and photo-realistic renderings at cus-
tomized angles, while SMPL methods can generate a com-
plete human body but often suffer from low resolution tex-
tures. In fact, most advanced human NeRF methods rely on
SMPL predictions as geometry priors to achieve more re-
alistic results. However, recovering occluded appearances
is an unsolved problem in both approaches. Exactly as
the reviewer pointed out, our method considers the com-
pleteness of SMPL mesh and designed Lcompleteness (Eq.
10) to combine advantages of both implicit and explicit ap-
proaches, which is novel and effective.

D. Metric on Completeness
In addition to the most commonly used metrics:

PSNR/SSIM, here we calculate an extra metric to measure
completeness of human renderings. Detailedly, we compute
IoU between 2D GT segmentations and the rendered masks
on the ZJU-MoCap dataset as an indication of complete-
ness. An occlusion-aware method is supposed to yield high
IoU scores.

Subject 377 386 387 392 393 394
[7] 0.8523 0.7908 0.8397 0.8103 0.8135 0.8002
Ours 0.8573 0.8755 0.8677 0.8327 0.8317 0.8458

E. Occlusion Sensitivity
In section 4.4 of the main paper, we demonstrated ex-

perimental results under simulated occlusions by masking
50% of the valid pixels. In this section, we explore the
sensitivity of our proposed method under different levels
of occlusion. We designed experiments by masking 10%,
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PSNR: 13.27
SSIM: 0.5243

PSNR: 12.29
SSIM: 0.4839

PSNR: 12.91
SSIM: 0.5040

PSNR: 13.01
SSIM: 0.5222

PSNR: 13.30
SSIM: 0.5328

PSNR: 12.57
SSIM: 0.5097

PSNR: 11.44
SSIM: 0.4882

PSNR: 9.551
SSIM: 0.4140

PSNR: 8.892
SSIM: 0.4066

PSNR: 8.225
SSIM: 0.4097

Figure 2. Comparison results for different levels of occlusions.

30%, 50%, 70%, and 90% of the valid pixels in the video
frames. The rendering results under various levels of oc-
clusions are compared in Figure 2. For most occlusion
levels (i.e. 10% - 70%), OccNeRF not only produces a
complete human geometry but also in-paints the occluded
appearances very well, surpassing HumanNeRF consider-
ably. Severe occlusions (i.e. 90%) are challenging for both
OccNeRF and HumanNeRF. Nevertheless, OccNeRF still
outperforms HumanNeRF by a safe margin due to less arti-
facts and more natural renderings. The quantitative metrics
also validate our claims.

F. More Comparisons on Simulated Occlu-
sions

In section 4.4 of the main paper, we compare OccNeRF
against the state-of-the-art method HumanNeRF [7]. How-
ever, we are also interested in comparing with Neural Body,
another standard benchmark [6]. We trained Neural Body
by following their suggested implementation, while adding
the same simulated occlusions to the first 80% of training
frames. In Figure 3, it is clear that Neural Body completely
fails on occluded training data. The renderings are highly

corrupted by unexpected artifacts and splotches due to the
occlusion. OccNeRF, on the other hand, demonstrates its
rendering superiority in terms of both geometry modeling
and appearance recovering.

G. More Results on Real-World Occlusions

Simulated occlusions cannot fully reflect the challenge
of real-world scenes. In section 4.5 of the main paper,
we presented results on two videos from the OcMotion [2]
dataset, which contain real-world occlusions from various
obstacles.

One of the main challenges is that it is sometimes diffi-
cult to acquire accurate priors (binary human mask, SMPL
parameters) from the occluded videos. Inaccurate priors
impair network performance that leads to poor rendering
quality. In the main paper, we acquired the binary mask
from Mask2Former [1] and the SMPL parameters from [3].
Here, we conduct additional experiments on two more chal-
lenging videos from the OcMotion dataset while using in-
accurately estimated priors. Specifically, the binary mask
is acquired from Mask2Former [1] again, but we calcu-
late the SMPL parameters using PARE [4], an occlusion-
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Figure 3. Qualitative results on simulated occlusions in the OcMotion dataset [2]

robust monocular video based method. As shown in Fig-
ure 4, inaccurate priors pose additional troubles to both of
the methods. OccNeRF tends to produce more smoothed
results lacking of high-frequency details, whereas Human-

NeRF fails to generate reasonable renderings at all.



ZJU-MoCap Subject 377 Subject 386
PSNRvis SSIMvis PSNRfull SSIMfull PSNRvis SSIMvis PSNRfull SSIMfull

Neural Body [6] 7.784 0.4214 16.61 0.9173 8.641 0.3120 19.02 0.9318
OccNeRF 13.23 0.6097 23.43 0.9642 13.44 0.5974 23.66 0.9639

ZJU-MoCap Subject 387 Subject 392
PSNRvis SSIMvis PSNRfull SSIMfull PSNRvis SSIMvis PSNRfull SSIMfull

Neural Body [6] 9.164 0.3520 18.74 0.9232 7.830 0.3698 16.73 0.9115
OccNeRF 13.27 0.5243 22.26 0.9513 13.00 0.5692 22.13 0.9575

ZJU-MoCap Subject 393 Subject 394
PSNRvis SSIMvis PSNRfull SSIMfull PSNRvis SSIMvis PSNRfull SSIMfull

Neural Body [6] 9.146 0.3861 18.13 0.9163 10.15 0.3830 19.73 0.9265
OccNeRF 12.00 0.4655 21.58 0.9489 13.12 0.5317 22.06 0.9532

Table 2. Quantitative comparison against Neural Body [6] on ZJU-MoCap. We color cells that have the best metric values.

Occluded input HumanNeRF HumanNeRFReference ReferenceOursOurs
Novel View Synthesis 1 Novel View Synthesis 2

Figure 4. More qualitative results on real-world occlusions with inaccurately estimated priors in the OcMotion dataset [2].
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