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In this supplementary material, we provide more details

about Retro-FPN.

• We provide more ablation studies to analyze the effect

of pyramid height and K-NN in Section 1.

• We provide more network details and experimental set-

tings of Retro-FPN in Section 2.

• We provide the detailed results on the S3DIS [1], Scan-

Net v2 [4], and SemanticKITTI [2] datasets in Section

3.

• We provide more visualization results of retrospective

refinement on the three datasets in Section 4.

• We release part of the source code as part of the sup-

plementary materials.

1. Ablation Studies
In this section, we provide more ablation studies regard-

ing the pyramid height of Retro-FPN and the K-NN search

used by the cross-attention block.

1.1. The effect of pyramid height

We analyze the effect of pyramid height and show the

results in Table 1. The height represents the number of

pyramid layers to conduct retrospective refinement. “Height

4” denotes the last four layers (from the fourth layer to

the first layer); “height 1” denotes only the final prediction

layer (lowest-level), where retro-transformer degrades to

self-attention. The results in Table 1 show that the segmen-

tation performance significantly improves as the height in-

creases, and reaches the top when all pyramid layers (Point
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Table 1. Effect of pyramid height.

heights 1 2 3 4 5

mIoU 70.7 70.4 71.5 72.1 73.0

Transformer [10] has 5 pyramid levels) are involved. The

results demonstrate the importance of feature pyramid, of

which the full-scale semantic information should be fully

preserved and carefully refined to facilitate the per-point

prediction.

1.2. The effect of K-NN

As mentioned in the Section 3.3, the refinement of each

point is based on the semantic pattern among nearby points

from the previous layer. Therefore, Table 2 shows the effect

of neighbor number K, and it indicates that the performance

of Retro-FPN are significantly improved as the K increases

within certain extent (K ≤ 16). However, as K becomes

larger (K = 32), the performance will not increase substan-

tially, and may degrade the results. The point distribution

of different local regions may vary dramatically, and while

searching more neighbour points can lead to a more robust

semantic context for complex areas, an oversized neigh-

bourhood could also introduce noise in ambiguous regions.

Table 2. Effect of K-NN.

K 2 4 8 16 32

mIoU 70.9 71.5 72.1 73.0 72.5

2. Detailed Settings
2.1. Network settings

There are three important network settings of Retro-

FPN, including the segmentation head, K-NN search in the

local cross-attention, the random sampling rates and the loss

balance weight λl.



Table 3. Segmentation head. The negative slope of the Leaky ReLU is 0.1. The head width is also the feature dimension of the point-level

semantic features.

Dataset Method Activation function head width

S3DIS [1]

MinkowskiNet (5cm) [3] + Retro-FPN ReLU 32

KPConv rigid [8] + Retro-FPN LeakyReLU 32

KPConv deform [8] + Retro-FPN LeakyReLU 32

Point Transformer [10] + Retro-FPN ReLU 32

ScanNet[4]
MinkowskiNet (5cm) [3] + Retro-FPN ReLU 32

Point Transformer V2[9] + Retro-FPN ReLU 48

SemanticKITTI [2] MinkowskiNet (5cm) [3] + Retro-FPN ReLU 32

Table 4. K-NN and downsampling rates. The K is the number of neighbors used by the cross-attention, the tuple (12, 12, 16, 16, 12)

denotes the K-NN used for five layers. The RS rates is random sampling rates used in each pyramid layer. The tuple (1, 1, 1, 1, 1) denotes

that the points (voxels) of all intermediate layers are used by Retro-FPN. And the tuple (1, 4, 4, 4, 1) indicates that points in the 2nd, 3rd,

and 4th layer are downsampled to a quarter using random sampling.

Dataset Method K RS rates λl

S3DIS [1]

MinkowskiNet (5cm) [3] + Retro-FPN 12 (1, 1, 1, 1, 1) 1.0

KPConv rigid [8] + Retro-FPN 12 (1, 1, 1, 1, 1) 1.0

KPConv deform [8] + Retro-FPN 16 (1, 1, 1, 1, 1) 1.0

Point Transformer [10] + Retro-FPN 16 (1, 1, 1, 1, 1) 1.0

ScanNet [4]
MinkowskiNet (5cm) [3] + Retro-FPN 16 (1, 1, 1, 1, 1) 2.4− 0.4l
Point Transformer V2[9] + Retro-FPN (12, 12, 16, 16, 12) (1, 4, 1, 1, 1) 1.0

SemanticKITTI [2] MinkowskiNet (5cm) [3] + Retro-FPN 12 (1, 4, 4, 4, 1) 1.0

Segmentation head. The segmentation head is an essen-

tial component of semantic segmentation networks, which

serves to transform the point-level semantic features into

per-point labels. In the Point Transformer [10], KPConv

[8], and MinkowskiNet [3] backbones, there is only a sin-

gle segmentation head at the end of the networks, which

mainly consists of layers of activation functions and linear

transformations. In Retro-FPN, each pyramid level has its

own segmentation head. To reduce computation cost, we

use a single activation function (Batch Normalization [6] is

optional) followed by a linear transformation as the segmen-

tation head (as illustrated in Section 3.2) for Retro-FPN. We

keep the activation function the same as the backbone net-

works, which aims to fully preserve the backbone perfor-

mance. Moreover, because Retro-FPN focuses on point-

level semantic information, a small head width (i.e., di-

mension C of the point-level semantic features Hl) suffices

to characterize the single category information, which also

helps to significantly reduce the computation cost. There-

fore, we set the head width to 32 for backbones (except

Point Transformer V2[9]) across the S3DIS [1], ScanNet

V2 [4], and the SemanticKITTI [2] datasets. The detailed

settings of the segmentation head are shown in Table 3.

K-NN. The local cross-attention in the retro-transformer

relies on K-NN to search neighbor points. To balance the

trade-off between inference time and performance, we try

to keep a small K to search nearest neighbors for all back-

bones. The detailed settings are shown in Table 4

Random sampling rates. As mentioned in Section 3.4

in our main paper, intermediate layers may contain too

many points (voxels) due to small downsampling rates,

which leads to substantial computation cost and limited re-

ceptive fields. Therefore, we use random sampling to re-

duce intermediate points (voxels). The random sampling

rates (RS rates) are shown in Table 4. Since the Point Trans-

former [10], KPConv [8], and MinkowskiNet [3] have 5

pyramid layers, we report the RS rates of the five layers.

The tuple (1, 1, 1, 1, 1) denotes that the points (voxels) of

all intermediate layers are used by Retro-FPN, and the tuple

(1, 4, 4, 4, 1) indicates that points in the 2nd, 3rd, and 4th

layer are downsampled to a quarter using random sampling.

Loss balance weight. Except the MinkowskiNet back-

bone on ScanNet v2 dataset, we typically set the loss bal-

ance weight to 1.0. For MinkowskiNet backbone on Scan-

Net, we set λl = 2.4−0.4l so that the information from the

last layer (layer 1) plays the key role.

2.2. Experimental settings

We implement our algorithm based on the PyTorch plat-

form. All experiments are conducted on RTX 3090 GPUs.

Since we have integrated Retro-FPN with Point Trans-

former [10], KPConv [8] and MinkowskiNet [3], we sepa-



rately describe the implementation details according to dif-

ferent backbones. Further, to have a fair comparison, we

keep the experimental settings the same as the backbone

networks.

Point Transformer. To have a fair comparison, we keep

the training settings the same for the “Point Transformer”

and “Point Transformer + Retro-FPN”. Specifically, we

train the networks using SGD optimizer with momentum

and weight decay of 0.9 and 0.0001, respectively. We use

a batch size of 4 and train for 100 epochs with an initial

learning rate of 0.1, which is dropped by 0.1 at epochs 60

and 80.

KPConv. KPConv conducts semantic segmentation by

segmenting small subclouds contained in spheres. During

training, the spheres are randomly sampled. During test-

ing, the spheres are regularly picked. Then, the segmenta-

tion results of all subclouds are merged into the whole scene

through a voting scheme. For both KPConv deform and KP-

Conv rigid, we set the radius of the sampled spheres to be

1.5m, and the batch size is 6. The other experimental set-

tings are the same as the KPConv paper, including voting

augmentation during testing.

MinkowskiNet. For MinkowskiNet, we conduct ex-

periments on the S3DIS [1], ScanNet v2 [4], and Se-

manticKITTI [2] datasets. For experiments on the S3DIS

and the ScanNet v2 dataset, we train the networks us-

ing SGD optimizer with an initial learning rate of 0.1,

batch size is 16, momentum and wight decay are 0.98 and

0.0001, respectively. During testing, we follow BPNet[5]

and MinkowskiNet[3] to obtain the test predictions with

voting augmentation. The learning rate is decayed with

poly learning rate scheduler and multi-step learning rate

scheduler on S3DIS and ScanNet, respectively. For ex-

periments on the SemanticKITTI [2] dataset, we first train

“MinkowskiNet + Retro-FPN” for 15 epochs (on sequences

00-07 and 09-10) with a starting learning rate 0.24 and co-

sine learning rate decay, the batch size is 4. Then, the model

is finetuned for another 15 epochs with a starting learning

rate 0.096 and cosine learning rate decay, where we select

the best mIoU during finetuning as the result of the vali-

dation set (sequence 08). To obtain results on the testing

set (online test), we further finetune the model on both the

training and validation sets (sequences 00-10) for 10 epochs

with a starting learning rate 0.032 and cosine learning rate

decay. Following the same practice as SPVNAS [7] and

Cylinder3D [11], 5 view rotation augmentation is used for

getting the online test predictions.

3. Detailed Experimental Results
In this section, we provide the detailed experimental re-

sults on the S3DIS [1] Area 5 and 6-fold evaluation, the

ScanNet v2 [4] and SemanticKITTI [2] datasets. The results

are listed in Table 5, 6, 7, and 8. Note that the per-category

IoUs listed in Table 7 are results on the test set, which are

cited from the ScanNet online website*.

4. More Visualization Results
In this section, we provide more visualization results of

the refining process conducted by Retro-FPN. In Figure 1,

we present more visual comparison between the backbone

network and Retro-FPN. The refining process of the im-

proved areas are lighlighted in blue circles. At last, figure 2

shows the visual results on S3DIS [1] Area 5, and Figure 3

visualizes the refined results on ScanNet v2 [4] dataset, Fig-

ure 4 shows the segmentation results in all pyramid layers.

The segmentation results of each pyramid layer are high-

lighted in blue circles.
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Table 5. Quantitative results on the S3DIS [1] dataset, evaluated on Area 5 validation. Red number means better results than baseline.

Method mIoU ceil. floor wall beam col. wind. door table chair sofa book. board clut.
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+ Retro-FPN 69.7 94.0 98.2 84.0 0.0 31.9 62.6 78.4 92.0 80.0 74.7 79.9 71.1 59.9

KPConv deform [8] 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 81.5 91.0 75.4 75.3 66.7 58.9

+ Retro-FPN 70.7 94.8 98.5 84.2 0.0 40.3 58.9 79.2 92.1 83.0 77.5 76.6 72.7 61.6

PointTransformer [10] 70.4 94.0 98.5 86.3 0.0 38.0 63.4 74.3 89.1 82.4 74.3 80.2 76.0 59.3

+ Retro-PFN 73.0 95.6 98.5 88.1 0.0 44.7 64.4 80.4 83.8 91.9 84.2 75.1 80.0 62.1

Table 6. Quantitative results on the S3DIS [1] dataset, evaluated on 6-fold cross validation. Red number means better results than baseline.

Method mIoU ceil. floor wall beam col. wind. door table chair sofa book. board clut.

PointTransformer [10] 73.5 94.3 97.5 84.7 55.6 58.1 66.1 78.2 77.6 74.1 67.3 71.2 65.7 64.8

+ Retro-PFN 77.3 95.8 97.7 86.6 68.0 61.0 69.4 81.4 77.1 81.7 75.3 69.9 72.8 67.5
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Table 7. Quantitative results on the ScanNet [4] dataset, evaluated on the test set. Red number means better results than baseline.
Method mIoU bath. bed bksf. cab. chair ctr. curt. desk door floor oth. pic. ref. shw. sink sofa tab. toil. wall win.

MinkowskiNet (2cm) [3] 73.6 85.9 81.8 83.2 70.9 84.0 52.1 85.3 66.0 64.3 95.1 54.4 28.6 73.1 89.3 67.5 77.2 68.3 87.4 85.2 72.7

+ Retro-FPN 74.4 84.2 80.0 76.7 74.0 83.6 54.1 91.4 67.2 62.6 95.8 55.2 27.2 77.7 88.6 69.6 80.1 67.4 94.1 85.8 71.7

Table 8. Quantitative results on the SemanticKITTI [2] dataset, evaluated on the test set. Red number means better results than baseline.
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Figure 1. More visual comparison of the segmentation results on both the indoor [1] (the first two examples) and the outdoor [2] (the last

two examples) datasets. The circles highlighted in blue visualize the segmentation process of the improved areas. The first two examples

show the comparison between “Point Transformer” and “Point Transformer + Retro-FPN” on the S3DIS [1] dataset. The last two examples

show the comparison between “MinkowskiNet” and “MinkowskiNet + Retro-FPN” on the SemanticKITTI [2] dataset.
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Figure 2. More visualization results of the refining process on S3DIS [1] Area 5. The circular areas highlighted in blue visualize the

predicted labels for each pyramid layer.
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Figure 3. More visualization results of the refining process on ScanNet v2 [4]. The circular areas highlighted in blue visualize the predicted

labels for each pyramid layer.
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Figure 4. More visualization results of the refining process on SemanticKITTI [2]. The circular areas highlighted in blue visualize the

predicted labels for each pyramid layer.


