Supplementary for “Retro-FPN: Retrospective Feature Pyramid Network for
Point Cloud Semantic Segmentation”

Peng Xiang'; Xin Wen?! Yu-Shen Liu!! Hui Zhang'! Yi Fang®, Zhizhong Han*
!School of Software, Tsinghua University, Beijing, China
2JD.com, Beijing, China *New York University Abu Dhabi *Wayne State University

xiangp23 @mails.tsinghua.edu.cn wenxinl6@jd.com liuyushen@tsinghua.edu.cn

huizhang @tsinghua.edu.cn yfang@nyu.edu h312h@wayne.edu

In this supplementary material, we provide more details
about Retro-FPN.

* We provide more ablation studies to analyze the effect
of pyramid height and K-NN in Section 1.

* We provide more network details and experimental set-
tings of Retro-FPN in Section 2.

e We provide the detailed results on the S3DIS [1], Scan-
Net v2 [4], and SemanticKITTI [2] datasets in Section
3.

e We provide more visualization results of retrospective
refinement on the three datasets in Section 4.

* We release part of the source code as part of the sup-
plementary materials.

1. Ablation Studies

In this section, we provide more ablation studies regard-
ing the pyramid height of Retro-FPN and the K-NN search
used by the cross-attention block.

1.1. The effect of pyramid height

We analyze the effect of pyramid height and show the
results in Table 1. The height represents the number of
pyramid layers to conduct retrospective refinement. “Height
4” denotes the last four layers (from the fourth layer to
the first layer); “height 1 denotes only the final prediction
layer (lowest-level), where retro-transformer degrades to
self-attention. The results in Table 1 show that the segmen-
tation performance significantly improves as the height in-
creases, and reaches the top when all pyramid layers (Point

“Equal contribution.

fCorresponding authors. This work was supported by National Key
R&D Program of China (2022YFC3800600), the National Natural Sci-
ence Foundation of China (62272263, 62072268), and in part by Tsinghua-
Kuaishou Institute of Future Media Data.

Table 1. Effect of pyramid height.
heights ‘ 1 2 3 4 5

mloU ‘70.7 704 715 721 73.0

Transformer [10] has 5 pyramid levels) are involved. The
results demonstrate the importance of feature pyramid, of
which the full-scale semantic information should be fully
preserved and carefully refined to facilitate the per-point
prediction.

1.2. The effect of K-NN

As mentioned in the Section 3.3, the refinement of each
point is based on the semantic pattern among nearby points
from the previous layer. Therefore, Table 2 shows the effect
of neighbor number K, and it indicates that the performance
of Retro-FPN are significantly improved as the K increases
within certain extent (K < 16). However, as K becomes
larger (K = 32), the performance will not increase substan-
tially, and may degrade the results. The point distribution
of different local regions may vary dramatically, and while
searching more neighbour points can lead to a more robust
semantic context for complex areas, an oversized neigh-
bourhood could also introduce noise in ambiguous regions.

Table 2. Effect of K-NN.
K ‘ 2 4 8 16 32

mloU | 709 715 721 73.0 725

2. Detailed Settings
2.1. Network settings

There are three important network settings of Retro-
FPN, including the segmentation head, K-NN search in the
local cross-attention, the random sampling rates and the loss
balance weight \;.

Table 3. Segmentation head. The negative slope of the Leaky ReLU is 0.1. The head width is also the feature dimension of the point-level

semantic features.

Dataset ‘ Method ‘ Activation function ‘ head width
MinkowskiNet (5cm) [3] + Retro-FPN ReLLU 32
S3DIS [1] KPConv rigid [8] + Retro-FPN LeakyReLLU 32
KPConv deform [8] + Retro-FPN LeakyReLU 32
Point Transformer [10] + Retro-FPN RelLU 32
ScanNet[4] MinkowskiNet (5cm) [3] + Retro-FPN ReLLU 32
Point Transformer V2[9] + Retro-FPN RelLU 48
SemanticKITTI [2] ‘ MinkowskiNet (5cm) [3] + Retro-FPN ‘ RelLU ‘ 32

Table 4. K-NN and downsampling rates. The K is the number of neighbors used by the cross-attention, the tuple (12, 12, 16, 16, 12)
denotes the K-NN used for five layers. The RS rates is random sampling rates used in each pyramid layer. The tuple (1, 1, 1, 1, 1) denotes
that the points (voxels) of all intermediate layers are used by Retro-FPN. And the tuple (1, 4, 4, 4, 1) indicates that points in the 2nd, 3rd,

and 4th layer are downsampled to a quarter using random sampling.

Dataset ‘ Method K ‘ RS rates ‘ Al
MinkowskiNet (5¢cm) [3] + Retro-FPN 12 (1,1,1,1, 1) 1.0
S3DIS [1] KPConv rigid [8] + Retro-FPN 12 (1,1,1,1, 1) 1.0
KPConv deform [8] + Retro-FPN 16 (1,1,1,1, 1) 1.0
Point Transformer [10] + Retro-FPN 16 (1,1,1,1, 1) 1.0
ScanNet [4] MinkowskiNet (5cm) [3] + Retro-FPN 16 (1,1,1,1,1) | 2.4 —0.41
Point Transformer V2[9] + Retro-FPN | (12, 12,16, 16,12) | (1,4,1,1, 1) 1.0
SemanticKITTI [2] | MinkowskiNet (5cm) [3] + Retro-FPN | 12 | (1,444)| 10

Segmentation head. The segmentation head is an essen-
tial component of semantic segmentation networks, which
serves to transform the point-level semantic features into
per-point labels. In the Point Transformer [10], KPConv
[8], and MinkowskiNet [3] backbones, there is only a sin-
gle segmentation head at the end of the networks, which
mainly consists of layers of activation functions and linear
transformations. In Retro-FPN, each pyramid level has its
own segmentation head. To reduce computation cost, we
use a single activation function (Batch Normalization [6] is
optional) followed by a linear transformation as the segmen-
tation head (as illustrated in Section 3.2) for Retro-FPN. We
keep the activation function the same as the backbone net-
works, which aims to fully preserve the backbone perfor-
mance. Moreover, because Retro-FPN focuses on point-
level semantic information, a small head width (i.e., di-
mension C of the point-level semantic features ') suffices
to characterize the single category information, which also
helps to significantly reduce the computation cost. There-
fore, we set the head width to 32 for backbones (except
Point Transformer V2[9]) across the S3DIS [1], ScanNet
V2 [4], and the SemanticKITTI [2] datasets. The detailed
settings of the segmentation head are shown in Table 3.

K-NN. The local cross-attention in the retro-transformer
relies on K-NN to search neighbor points. To balance the
trade-off between inference time and performance, we try

to keep a small K to search nearest neighbors for all back-
bones. The detailed settings are shown in Table 4

Random sampling rates. As mentioned in Section 3.4
in our main paper, intermediate layers may contain too
many points (voxels) due to small downsampling rates,
which leads to substantial computation cost and limited re-
ceptive fields. Therefore, we use random sampling to re-
duce intermediate points (voxels). The random sampling
rates (RS rates) are shown in Table 4. Since the Point Trans-
former [10], KPConv [8], and MinkowskiNet [3] have 5
pyramid layers, we report the RS rates of the five layers.
The tuple (1, 1, 1, 1, 1) denotes that the points (voxels) of
all intermediate layers are used by Retro-FPN, and the tuple
(1, 4, 4, 4, 1) indicates that points in the 2nd, 3rd, and 4th
layer are downsampled to a quarter using random sampling.

Loss balance weight. Except the MinkowskiNet back-
bone on ScanNet v2 dataset, we typically set the loss bal-
ance weight to 1.0. For MinkowskiNet backbone on Scan-
Net, we set \; = 2.4 — 0.4l so that the information from the
last layer (layer 1) plays the key role.

2.2. Experimental settings

We implement our algorithm based on the PyTorch plat-
form. All experiments are conducted on RTX 3090 GPUs.
Since we have integrated Retro-FPN with Point Trans-
former [10], KPConv [8] and MinkowskiNet [3], we sepa-

rately describe the implementation details according to dif-
ferent backbones. Further, to have a fair comparison, we
keep the experimental settings the same as the backbone
networks.

Point Transformer. To have a fair comparison, we keep
the training settings the same for the “Point Transformer”
and “Point Transformer + Retro-FPN”. Specifically, we
train the networks using SGD optimizer with momentum
and weight decay of 0.9 and 0.0001, respectively. We use
a batch size of 4 and train for 100 epochs with an initial
learning rate of 0.1, which is dropped by 0.1 at epochs 60
and 80.

KPConv. KPConv conducts semantic segmentation by
segmenting small subclouds contained in spheres. During
training, the spheres are randomly sampled. During test-
ing, the spheres are regularly picked. Then, the segmenta-
tion results of all subclouds are merged into the whole scene
through a voting scheme. For both KPConv deform and KP-
Conv rigid, we set the radius of the sampled spheres to be
1.5m, and the batch size is 6. The other experimental set-
tings are the same as the KPConv paper, including voting
augmentation during testing.

MinkowskiNet. For MinkowskiNet, we conduct ex-
periments on the S3DIS [I], ScanNet v2 [4], and Se-
manticKITTI [2] datasets. For experiments on the S3DIS
and the ScanNet v2 dataset, we train the networks us-
ing SGD optimizer with an initial learning rate of 0.1,
batch size is 16, momentum and wight decay are 0.98 and
0.0001, respectively. During testing, we follow BPNet[5]
and MinkowskiNet[3] to obtain the test predictions with
voting augmentation. The learning rate is decayed with
poly learning rate scheduler and multi-step learning rate
scheduler on S3DIS and ScanNet, respectively. For ex-
periments on the SemanticKITTI [2] dataset, we first train
“MinkowskiNet + Retro-FPN” for 15 epochs (on sequences
00-07 and 09-10) with a starting learning rate 0.24 and co-
sine learning rate decay, the batch size is 4. Then, the model
is finetuned for another 15 epochs with a starting learning
rate 0.096 and cosine learning rate decay, where we select
the best mloU during finetuning as the result of the vali-
dation set (sequence 08). To obtain results on the testing
set (online test), we further finetune the model on both the
training and validation sets (sequences 00-10) for 10 epochs
with a starting learning rate 0.032 and cosine learning rate
decay. Following the same practice as SPVNAS [7] and
Cylinder3D [11], 5 view rotation augmentation is used for
getting the online test predictions.

3. Detailed Experimental Results

In this section, we provide the detailed experimental re-
sults on the S3DIS [1] Area 5 and 6-fold evaluation, the
ScanNet v2 [4] and SemanticKITTI [2] datasets. The results
are listed in Table 5, 6, 7, and 8. Note that the per-category

ToUs listed in Table 7 are results on the test set, which are
cited from the ScanNet online website”.

4. More Visualization Results

In this section, we provide more visualization results of
the refining process conducted by Retro-FPN. In Figure 1,
we present more visual comparison between the backbone
network and Retro-FPN. The refining process of the im-
proved areas are lighlighted in blue circles. At last, figure 2
shows the visual results on S3DIS [1] Area 5, and Figure 3
visualizes the refined results on ScanNet v2 [4] dataset, Fig-
ure 4 shows the segmentation results in all pyramid layers.
The segmentation results of each pyramid layer are high-
lighted in blue circles.

References

[1] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, loan-
nis Brilakis, Martin Fischer, and Silvio Savarese. 3d seman-
tic parsing of large-scale indoor spaces. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 1534-1543, 2016. 1,2,3,4,6,7

[2] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke,
C. Stachniss, and J. Gall. SemanticKITTI: A Dataset for
Semantic Scene Understanding of LiDAR Sequences. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV),2019. 1,2,3,5,6,9

[3] Christopher Choy, JunYoung Gwak, and Silvio Savarese.
4D spatio-temporal convnets: Minkowski convolutional neu-
ral networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2019. 2,3,4,5

[4] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias NieBner. ScanNet:
Richly-annotated 3D reconstructions of indoor scenes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5828-5839, 2017. 1,2, 3,5, 8

[5] Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, and
Tien-Tsin Wong. Bidirectional projection network for cross
dimension scene understanding. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14373-14382, 2021. 3

[6] Sergey loffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448-456. pmlr, 2015. 2

[7] Haotian* Tang, Zhijian* Liu, Shengyu Zhao, Yujun Lin, Ji
Lin, Hanrui Wang, and Song Han. Searching efficient 3D ar-
chitectures with sparse point-voxel convolution. In European
Conference on Computer Vision, 2020. 3

[8] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, Francois Goulette, and Leonidas J
Guibas. KPConv: Flexible and deformable convolution for
point clouds. In Proceedings of the IEEE/CVF international

*http://kaldir.vc.in.tum.de/scannet_benchmark/

Table 5. Quantitative results on the S3DIS [1] dataset, evaluated on Area 5 validation. Red number means better results than baseline.

Method ‘ mloU ‘ ceil. floor wall beam col. wind. door table chair sofa book. board clut.
MinkowskiNet (5cm) [3] | 654 | 91.8 987 862 00 341 489 624 816 89.8 472 749 744 58.6
+ Retro-FPN 695 | 943 970 853 0.0 270 595 775 812 894 741 752 80.5 62.0
KPConv rigid [8] 654 | 926 973 814 0.0 16.5 545 695 90.1 802 746 664 63.7 58.1
+ Retro-FPN 69.7 | 940 982 840 0.0 319 626 784 920 80.0 747 799 71.1 599
KPConv deform [8] 67.1 [928 973 824 00 239 580 690 815 91.0 754 753 66.7 589
+ Retro-FPN 707 | 948 985 842 00 403 589 792 9211 83.0 775 766 727 61.6
PointTransformer [10] 704 | 940 985 863 0.0 380 634 743 89.1 824 743 802 76.0 59.3
+ Retro-PFN 73.0 | 956 98.5 88.1 0.0 447 o644 804 838 919 842 751 80.0 62.1

Table 6. Quantitative results on the S3DIS [1] dataset, evaluated on 6-fold cross validation. Red number means better results than baseline.

Method \mIoU \ ceil. floor wall beam col. wind. door table chair sofa book. board clut.

PointTransformer [10] | 73.5 | 943 975 847 556 581 66.1 782 776 741 673 712 657 6438
+ Retro-PFN 773 | 958 977 86.6 680 610 694 814 771 817 753 699 728 675

conference on computer vision, pages 6411-6420, 2019. 2,
4
[9] Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, and Heng-

shuang Zhao. Point transformer v2: Grouped vector atten-
tion and partition-based pooling. In NeurIPS, 2022. 2

[10] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 16259-16268, 2021. 1, 2, 4

[11] Xinge Zhu, Hui Zhou, Tai Wang, Fangzhou Hong, Yuexin
Ma, Wei Li, Hongsheng Li, and Dahua Lin. Cylindrical and
asymmetrical 3D convolution networks for lidar segmenta-
tion. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 9939-9948, 2021. 3

Table 7. Quantitative results on the ScanNet [4] dataset, evaluated on the test set. Red number means better results than baseline.

Method ‘ mloU ‘ bath. bed bksf. cab. chair ctr. curt. desk door floor oth. pic. ref. shw. sink sofa tab. toil. wall win.
MinkowskiNet (2cm) [3] | 73.6 | 859 81.8 832 709 840 521 853 66.0 643 951 544 286 73.1 893 675 772 683 874 852 727
+ Retro-FPN 744 | 842 800 767 740 836 541 914 672 626 958 552 272 777 886 69.6 80.1 674 941 858 717

Table 8. Quantitative results on the SemanticKITTI [2] dataset, evaluated on the test set. Red number means better results than baseline.

2 = =
=) =) Z 5 o =
S = - S 2 .20
2 7 e ¢ Z 3 » 5 5 2 g 7
> 2 %4 o] 2 > 2 b= Z 5 o) = S §0 = ‘s) =]
. 4 E % = g 2 k=
Method mou| § & & & ®¥ & & & ¢ & ¥ 8 E & ¢ & 8 & E
MinkowskiNet (5cm) [3] | 64.1 - - - - - - - - - - - - - - - - -
+ Retro-FPN 68.0 | 97.5 502 523 577 620 657 694 433 91.1 69.1 767 345 925 687 858 739 703 649 659

Backbone Retro-FPN

Chair - Column - Door Wall -Beam
Table Floor - Ceiling - Clutter - Bookcase

Ry

L7 TS

Input

51

- Car Bicycle - Truck -Road - Sidewalk - Vegetation
-Fence - Trunk - Unlabeled - Terrain - People Building

Figure 1. More visual comparison of the segmentation results on both the indoor [1] (the first two examples) and the outdoor [2] (the last
two examples) datasets. The circles highlighted in blue visualize the segmentation process of the improved areas. The first two examples
show the comparison between “Point Transformer” and “Point Transformer + Retro-FPN” on the S3DIS [1] dataset. The last two examples
show the comparison between “MinkowskiNet” and “MinkowskiNet + Retro-FPN” on the SemanticKITTI [2] dataset.

Retro-FPN

@*3 =3

\‘k~‘} ﬂ “

Input ys Y4 NE i
Chair - Column - Door Wall -Beam
Table Floor - Ceiling - Clutter - Bookcase

Figure 2. More visualization results of the refining process on S3DIS [1] Area 5. The circular areas highlighted in blue visualize the
predicted labels for each pyramid layer.

Retro-FPN

5)4
Window - Sofa -Other furniture - Unclassified
Wall Desk Floor

Figure 3. More visualization results of the refining process on ScanNet v2 [4]. The circular areas highlighted in blue visualize the predicted
labels for each pyramid layer.

Input GT Retro-FPN

4 3 ’j’; 2
B car " Bicycle [Tuck IRoad B sidewaik
- Fence - Trunk Pole - Terrain - Vegetation

Figure 4. More visualization results of the refining process on SemanticKITTI [2]. The circular areas highlighted in blue visualize the
predicted labels for each pyramid layer.

