
Supplementary Material
DiffFit: Unlocking Transferability of Large Diffusion Models

via Simple Parameter-Efficient Fine-Tuning

Enze Xie1, Lewei Yao1, Han Shi1, Zhili Liu1, Daquan Zhou2, Zhaoqiang Liu1, Jiawei Li1, Zhenguo Li1

1Huawei Noah’s Ark Lab 2National University of Singapore

1. More Applications
1.1. Combine DiffFit with ControlNet

Setup. To verify that DiffFit can be applied to large-scale text-to-image generation models, we conducted experiments on the
recent popular ControlNet [29] model. We used the official code of ControlNet1, and chose the semantic segmentation mask
as the additional condition. We used the COCO-Stuff [2] as our dataset and the text prompt was generated by the BLIP [15].
The model was trained on the training set and evaluated on the validation set using 8 V100 GPUs with a batch size of 2 per
GPU and 20 epochs. Unless otherwise stated, we followed the official implementation of ControlNet for all hyper-parameters
including the learning rate and the resolution.

Combination. ControlNet [29] enhances the original Stable Diffusion (SD) by incorporating a conditioning network com-
prising two parts: a set of zero convolutional layers initialized to zero and a trainable copy of 13 layers of SD initialized from
a pre-trained model.

In our DiffFit setting, we freeze the entire trainable copy part and introduce a scale factor of γ in each layer. Then, we
unfreeze the γ and all the bias terms. Note that in ControlNet, the zero convolutional layers are required to be trainable.
Table 1 shows that DiffFit has 11.2M trainable parameters while the zero convolutional layers contribute 10.8M parameters.
Reducing the trainable parameters in zero convolutional layers is plausible, but it is beyond the scope of this paper.

Results. Table 1 displays the results obtained from the original ControlNet and the results from combining DiffFit with Con-
trolNet. Our results show that the addition of DiffFit leads to comparable FID and CLIP scores while significantly reducing
the number of trainable parameters. In addition, we note that ControlNet primarily focuses on fine-grained controllable gen-
eration while FID and CLIP score may not accurately reflect the overall performance of a model. Figures 1 and 2 compare
the results from ControlNet and DiffFit. When using the same mask and text prompt as conditions, fine-tuning with DiffFit
produces more visually appealing results compared to fine-tuning with the original ControlNet.

Our experimental results suggest that DiffFit has great potential to improve the training of other types of advanced gener-
ative models.

1.2. Combine DiffFit with DreamBooth

Setup. Our DiffFit can also be easily combined with the DreamBooth [22]. DreamBooth is a personalized text-to-image
diffusion model that fine-tunes a pre-trained text-to-image model using a few reference images of a specific subject, allowing
it to synthesize fully-novel photorealistic images of the subject contextualized in different scenes. Our implementation on
DreamBooth utilizes the codebase from Diffusers2, with Stable Diffusion as the base text-to-image model.

Implementation detail. Given 3-5 input images, the original DreamBooth fine-tunes the subject embedding and the entire
text-to-image (T2I) model. In contrast, our DiffFit simplifies the fine-tuning process by incorporating scale factor γ into all
attention layers of the model and requiring only the γ, bias term, LN, and subject embedding to be fine-tuned.

Results. We compare the original full-finetuning approach of DreamBooth with the fine-tuning using LoRA and DiffFit, as
shown in Figures 3 and 4. First, we observe that all three methods produce similar generation quality. Second, we find that
the original full-finetuning approach is storage-intensive, requiring the storage of 859M parameters for one subject-driven

1https://github.com/lllyasviel/ControlNet
2https://github.com/huggingface/diffusers/tree/main/examples/dreambooth

1

https://github.com/lllyasviel/ControlNet
https://github.com/huggingface/diffusers/tree/main/examples/dreambooth

fine-tuning. In contrast, LoRA and DiffFit are both parameter-efficient (requiring the storage of less than 1% parameters),
with DiffFit further reducing trainable parameters by about 26% compared to LoRA.

1.3. Combine DiffFit with LLaMA and Alpaca

Setup. LLaMA [24] is an open and efficient large language model (LLM) from Meta, ranging from 7B to 65B parameters.
Alpaca is a model fully fine-tuned from the LLaMA 7B model on 52K instruction-following demonstrations and behaves
qualitatively similarly to OpenAI’s ChatGPT model text-davinci-003.

Combination. We use the original code from Alpaca3 as the baseline and compare it with Alpaca-LoRA4. Since LLaMA and
DiT have a similar Transformer design, the fine-tuning strategy of LLaMA-DiffFit is exactly the same as that of DiT-DiffFit,
except that the learning rate is set to 3e-4 to align with Alpaca-LoRA.

Results. In Table 2, we showcase the instruction tuning results on llama using Alpaca, LoRA, and DiffFit. The trainable
parameters of Alpaca, LoRA, and DiffFit are 7B, 6.7M, and 0.7M. The model fine-tuned with DiffFit exhibits strong perfor-
mance in natural language question-answering tasks (e.g., common sense questioning, programming, etc.). This validates the
efficacy of DiffFit for instruction tuning in NLP models, highlighting DiffFit as a flexible and general fine-tuning approach.

Method FID ↓ CLIP Score ↑ Total Params (M) Trainable Params (M)

ControlNet 20.1 0.3067 1343 361
ControlNet + DiffFit 19.5 0.3064 1343 11.2

Table 1: Results of original ControlNet and combined DiffFit on COCO-Stuff dataset.

2. More Implementation Details
2.1. Adding the Scale Factor γ in Self-Attention

This section demonstrates the incorporation of scale factor γ into the self-attention modules. Traditionally, a self-attention
layer comprises two linear operations: (1) QKV-Linear operation and (2) Project-Linear operation. Consistent with the
approach discussed above in the paper, the learnable scale factor is initialized to 1.0 and subsequently fine-tuned. Algorithm 1
presents the Pytorch-style pseudo code.

2.2. Dataset Description

This section describes 8 downstream datasets/tasks that we have utilized in our experiments to fine-tune the DiT with our
DiffFit method.

Food101 [1]. This dataset contains 101 food categories, totaling 101,000 images. Each category includes 750 training images
and 250 manually reviewed test images. The training images were kept intentionally uncleaned, preserving some degree of
noise, primarily vivid colors and occasionally incorrect labels. All images have been adjusted to a maximum side length of
512 pixels.

SUN 397 [28]. The SUN benchmark database comprises 108,753 images labeled into 397 distinct categories. The quantities
of images vary among the categories, however, each category is represented by a minimum of 100 images. These images are
commonly used in scene understanding applications.

DF20M [21]. DF20 is a new fine-grained dataset and benchmark featuring highly accurate class labels based on the taxonomy
of observations submitted to the Danish Fungal Atlas. The dataset has a well-defined class hierarchy and a rich observational
metadata. It is characterized by a highly imbalanced long-tailed class distribution and a negligible error rate. Importantly,
DF20 has no intersection with ImageNet, ensuring unbiased comparison of models fine-tuned from ImageNet checkpoints.

Caltech 101 [11]. The Caltech 101 dataset comprises photos of objects within 101 distinct categories, with roughly 40 to
800 images allocated to each category. The majority of the categories have around 50 images. Each image is approximately
300×200 pixels in size.

3https://github.com/tatsu-lab/stanford_alpaca
4https://github.com/tloen/alpaca-lora

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tloen/alpaca-lora

Text prompt: a red double decker bus driving down a street

GT Image Mask ControlNet ControlNet+DiffFit

Text prompt: a couple of zebra standing on top of a lush green field

Figure 1: Visualization of original ControlNet and combined DiffFit on COCO-Stuff dataset.

CUB-200-2011 [27]. CUB-200-2011 (Caltech-UCSD Birds-200-2011) is an expansion of the CUB-200 dataset by approx-
imately doubling the number of images per category and adding new annotations for part locations. The dataset consists of
11,788 images divided into 200 categories.

ArtBench-10 [16]. ArtBench-10 is a class-balanced, standardized dataset comprising 60,000 high-quality images of artwork
annotated with clean and precise labels. It offers several advantages over previous artwork datasets including balanced class
distribution, high-quality images, and standardized data collection and pre-processing procedures. It contains 5,000 training
images and 1,000 testing images per style.

Oxford Flowers [20]. The Oxford 102 Flowers Dataset contains high quality images of 102 commonly occurring flower
categories in the United Kingdom. The number of images per category range between 40 and 258. This extensive dataset
provides an excellent resource for various computer vision applications, especially those focused on flower recognition and
classification.

Stanford Cars [13]. In the Stanford Cars dataset, there are 16,185 images that display 196 distinct classes of cars. These
images are divided into a training and a testing set: 8,144 images for training and 8,041 images for testing. The distribution
of samples among classes is almost balanced. Each class represents a specific make, model, and year combination, e.g., the
2012 Tesla Model S or the 2012 BMW M3 coupe.

3. More FID Curves
We present additional FID curves for the following datasets: Stanford Cars, SUN 397, Caltech 101, and DF20M as

illustrated in Figures 5 through 8, respectively. The results demonstrate that our DiffFit achieves rapid convergence, delivers
compelling FID scores compared to other parameter-efficient finetuning strategies, and is competitive in the full-finetuning
setting.

Text Prompt: a brown teddy bear sitting on top of a brown chair

Text prompt: a bed sitting next to a window in a bedroom

GT Image Mask ControlNet ControlNet+DiffFit

Figure 2: Visualization of original ControlNet and combined DiffFit on COCO-Stuff dataset.

4. More Theoretical Analysis
In this section, we will provide a more detailed analysis of the effect of scaling factors. Specifically, we will present a

formal version and proof of Theorem 1, which was informally stated in the main document.
Our theoretical results are closely related to the learning of neural networks. It is worth noting that the majority of works

in this area concentrate on the simplified setting where the neural network only has one non-linearly activated hidden layer
with no bias terms, see, e.g., [31, 10, 8, 30, 9, 25]. As our contributions are mainly experimental, we only provide some
intuitive theoretical analysis to reveal the effect of scaling factors. To this end, we will consider the following simplified
settings.

• Following the approach of [12, 5], we replace the noise neural network ϵθ(xt, t) used in the diffusion model with
xt−

√
ᾱtxθ(xt,t)√
1−ᾱt

,5 where xθ(xt, t) is a neural network that approximates the original signal. In addition, in the sampling
process, we assume a single sampling step from the end time t = E to the initial time t = 0, which gives x0 =
xθ(xE , E). For brevity, we denote xθ(·, E) by G(·), and we assume that G(s) = f(Ws + b) for all s ∈ RD,
where W ∈ RD×D is a weight matrix, b ∈ RD is the offset vector, and f : R → R represents a non-linear activation
function that does not grow super-linearly (cf. Appendix 4.3) and it is applied element-wise. While one-step generation
may seem restrictive, recent works [17, 23] have achieved it for the diffusion models.

• Suppose that we have a dataset generated from distribution Q0 ∈ RD. Further assuming that there exist ground-
truth scaling factors γ∗ ∈ RD such that each entry of any data point in a relatively small dataset generated from
distribution P0 ∈ RD can be written as xTγ∗ for some x sampled from Q0. We denote this transition from Q0 to P0

as P0 = fγ∗#Q0 for brevity.

5Here we assume that in the forward process, the conditional distribution q0t(xt|x0) = N (
√
ᾱtx0, (1− ᾱt)I). See Section 3.1 in the main document.

Text prompt: A photo of [V] dog sleeping under a big tree

Text prompt: A photo of [V] dog in the beach

Full FT (859.5M, 100%) LoRA (0.79M, 0.092%) DiffFit (0.58M, 0.067%)

Input Images

DreamBooth

Text prompt: A photo of [V] dog

Figure 3: Visualization of original DreamBooth, with LoRA and DiffFit.

Text prompt: A photo of [gray] [V] car

Input Images: 问界M5

Text prompt: a photo of [green] [V] car on the highway

Text prompt: a photo of [yellow] [V] car in HK street

Full FT (859.5M, 100%) LoRA (0.79M, 0.092%) DiffFit (0.58M, 0.067%)

DreamBooth

Figure 4: Visualization of original DreamBooth, with LoRA and DiffFit.

• Recent theoretical results for diffusion models [7, 6, 14, 4, 3] show that under appropriate conditions, diffusion models
can generate samples that approximately follow the original data distribution. Based on these results, we assume that
G(ϵ) ∼ Q̂0 for ϵ ∼ N (0, I), where Q̂0 is close to Q0 in some probability distance.

Under the above settings, in the training process for the diffusion model using the relatively small dataset, if we only

Instruction: Tell me about alpacas.
Alpaca: Alpacas are small, fluffy animals related to camels and llamas. They are native to Peru and Bolivia, and were first domesticated around 5,000
years ago. They are kept mainly for their fine, soft fleece, which is used to make knitwear and other garments. Alpacas are herd animals and live in
small family groups, led by an older male. They are highly social animals and can form strong bonds with their owners.
Alpaca-LoRA: Alpacas are members of the camelid family and are native to the Andes Mountains of South America. They are known for their soft,
luxurious fleece, which is used to make clothing, blankets, and other items. Alpacas are herbivores and graze on grasses and other plants. They are
social animals and live in herds of up to 20 individuals.
LLaMA-DiffFit: Alpacas are members of the camelid family and are native to the Andes Mountains in South America. They are domesticated for
their soft, luxurious fleece, which is used to make clothing, blankets, and other textiles. Alpacas are herbivores and graze on grasses and other plants.
They can live up to 20 years in captivity and are known for their gentle nature.

Instruction: List all Canadian provinces in alphabetical order.
Alpaca: Alberta, British Columbia, Manitoba, New Brunswick, Newfoundland and Labrador, Nova Scotia, Ontario, Prince Edward Island, Quebec,
Saskatchewan, Northwest Territories, Nunavut, Yukon.
Alpaca-LoRA: Alberta, British Columbia, Manitoba, New Brunswick, Newfoundland and Labrador, Nova Scotia, Ontario, Prince Edward Island,
Quebec, Saskatchewan.
LLaMA-DiffFit: Alberta, British Columbia, Manitoba, New Brunswick, Newfoundland and Labrador, Northwest Territories, Nova Scotia, Nunavut,
Ontario, Prince Edward Island, Quebec, Saskatchewan, Yukon.

Instruction: Tell me five words that rhyme with ’shock’.
Alpaca: Five words that rhyme with shock are: rock, pop, shock, cook, and snock.
Alpaca-LoRA: Flock, lock, rock, stock, and sock.
LLaMA-DiffFit: Shock, sock, rock, cook, and book.

Instruction: Write a Python program that prints the first 10 Fibonacci numbers.
Alpaca:

numbers = [0, 1]

for i in range(2, 11):
numbers.append(numbers[i-2] + numbers[i-1])

print(numbers)
Output: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

Alpaca-LoRA:

def fibonacci(n):
if n == 0:

return 0
elif n == 1:

return 1
else:

return fibonacci(n-1) + fibonacci(n-2)

print(fibonacci(10))

LLaMA-DiffFit:

def fib(n):
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib(n-1) + fib(n-2)

print(fib(10))

Table 2: Instruction-following Comparison between Alpaca, Alpaca-LoRA and LLaMA-DiffFit.

fine-tune the scaling factors, the objective function can be expressed as:

min
γ∈RD

m∑
i=1

∥G(ϵi)
Tγ − xTi γ

∗∥22, (1)

Algorithm 1 Adding the trainable scale factor γ in the attention block.

import torch
import torch.nn as nn

class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, proj_bias=True, attn_drop=0., proj_drop=0., eta=None):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5

self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim, bias=proj_bias)
self.proj_drop = nn.Dropout(proj_drop)

Initilize gamma to 1.0
self.gamma1 = nn.Parameter(torch.ones(dim * 3))
self.gamma2 = nn.Parameter(torch.ones(dim))

def forward(self, x):
B, N, C = x.shape
Apply gamma
qkv = (self.gamma1 * self.qkv(x)).reshape(B, N, 3, self.num_heads, C//self.num_heads).permute(2,0,3,1,4)
q, k, v = qkv.unbind(0)

attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)

x = (attn @ v).transpose(1, 2).reshape(B, N, C)
Apply gamma
x = self.gamma2 * self.proj(x)
x = self.proj_drop(x)
return x

0

50

100

150

200

250

300

350

15K 45K 75K 105K 135K 165K 195K 225K

FI
D

Training Steps

VPT

Full Fine-tune

DiffFit

Adapt-Parallel

BitFit

Stanford Cars

Figure 5: FID of five methods every 15K iterations on Stan-
ford Cars dataset.

0

50

100

150

200

250

300

15K 45K 75K 105K 135K 165K 195K 225K

FI
D

Training Steps

VPT

Full Fine-tune

DiffFit

Adapt-Parallel

BitFit

SUN-397

Figure 6: FID of five methods every 15K iterations on SUN
397 dataset.

where ϵi ∼ N (0, I), xi ∼ Q0 (then xTi γ
∗ corresponds to an entry of data point generated from P0), and m is the number of

training samples. As G(ϵi) is sub-Gaussian (cf. Appendix 4.2) and G(ϵi) ∼ Q̂0 with Q̂0 being close to Q0, we assume that
xi can be represented as xi = G(ϵi) + zi, where each entry of zi is zero-mean sub-Gaussian with the sub-Gaussian norm
(cf. Appendix 4.2 for the definition of sub-Gaussian norm) being upper bounded by some small constant η > 0.

Let ai = G(ϵi) = f(Wϵi + b) ∈ RD. We write A = [a1, . . . ,am]T ∈ Rm×D, Z = [z1, . . . , zm]T ∈ Rm×D, and
y = [y1, . . . , ym]T with yi = xTi γ

∗. Then, we have y = (A+ Z)γ∗ and the objective function (1) can be re-written as

min
γ∈RD

∥Aγ − y∥22. (2)

30

80

130

180

230

280

330

380

15K 45K 75K 105K 135K 165K 195K 225K

FI
D

Training Steps

Caltech-101

VPT

Full Fine-tune

DiffFit

Adapt-Parallel

BitFit

Figure 7: FID of five methods every 15K iterations on Cal-
tech 101 dataset.

0

50

100

150

200

250

300

350

15K 45K 75K 105K 135K 165K 195K 225K

FI
D

Training Steps

DF-20M

VPT

Full Fine-tune

DiffFit

Adapt-Parallel

BitFit

Figure 8: FID of five methods every 15K iterations on
DF20M dataset.

Let Vmin := mini∈{1,...,D} Var[f(Xi)] with Xi ∼ N (bi, ∥wi∥22), where bi is the i-th entry of the offset vector b and
wT
i ∈ R1×D is the i-th row of the weight matrix W. Then, we have the following theorem concerning the optimal solution

to (2). The proof of Theorem 1 is deferred to Section 4.4.

Theorem 1. Under the above settings, if γ̂ is an optimal solution to (2) and m = Ω(D2 logD), with probability 1 −
e−Ω(D logD), it holds that

∥γ̂ − γ∗∥2 <
4
√
2η√

Vmin

· ∥γ∗∥2. (3)

Note that η > 0 is considered to be small and Vmin is a fixed positive constant. In addition, the gradient descent algorithm
aims to minimize (2). Therefore, Theorem 1 essentially says that when the number of training samples is sufficiently large, the
simple gradient descent algorithm finds an estimate γ̂ that is close to γ∗ with high probability (in the sense that the relative
distance ∥γ̂ − γ∗∥2/∥γ∗∥2 is small). Furthermore, with this γ̂, the diffusion model generates distribution P̂0 = fγ̂#Q̂0,
which is naturally considered to be close to P0 = fγ∗#Q0 since γ̂ is close to γ∗ and Q̂0 is close to Q0.

Before presenting the proof of Theorem 1 in Section 4.4, we provide some auxiliary results.

4.1. Notation

We write [N] = {1, 2, . . . , N} for a positive integer N . The unit sphere in RD is denoted by SD−1 := {x ∈ RD :
∥x∥2 = 1}. We use ∥X∥2 to denote the spectral norm of a matrix X. We use the symbols C,C ′, c to denote absolute
constants, whose values may differ from line to line.

4.2. General Auxiliary Results

First, the widely-used notion of an ϵ-net is presented as follows, see, e.g., [18, Definition 3].

Definition 1. Let (X ,d) be a metric space, and fix ϵ > 0. A subset S ⊆ X is said be an ϵ-net of X if, for all x ∈ X , there
exists some s ∈ S such that d(s,x) ≤ ϵ. The minimal cardinality of an ϵ-net of X , if finite, is denoted C(X , ϵ) and is called
the covering number of X (at scale ϵ).

The following lemma provides a useful bound for the covering number of the unit sphere.

Lemma 1. [26, Lemma 5.2] The unit Euclidean sphere SD−1 equipped with the Euclidean metric satisfies for every ϵ > 0
that

C(SD−1, ϵ) ≤
(
1 +

2

ϵ

)D
. (4)

In addition, we have the following lemma concerning the spectral norm of a matrix.

Lemma 2. [26, Lemma 5.3] Let A be an m×D matrix, and let Nϵ be an ϵ-net of SD−1 for some ϵ ∈ (0, 1). Then

∥A∥2 ≤ (1− ϵ)−1 max
x∈Nϵ

∥Ax∥2. (5)

Standard definitions for sub-Gaussian and sub-exponential random variables are presented as follows.

Definition 2. A random variable X is said to be sub-Gaussian if there exists a positive constant C such that (E [|X|p])1/p ≤
C
√
p for all p ≥ 1, and the corresponding sub-Gaussian norm is defined as ∥X∥ψ2

:= supp≥1 p
−1/2 (E [|X|p])1/p.

Definition 3. A random variable X is said to be sub-exponential if there exists a positive constant C such that (E [|X|p])1/p ≤
Cp for all p ≥ 1, and the corresponding sub-exponential norm is defined as ∥X∥ψ1

:= supp≥1 p
−1 (E [|X|p])1/p.

The following lemma concerns the relation between sub-Gaussian and sub-exponential random variables.

Lemma 3. [26, Lemma 5.14] A random variable X is sub-Gaussian if and only if X2 is sub-exponential. Moreover,

∥X∥2ψ2
≤ ∥X∥2ψ1

≤ 2∥X∥2ψ2
. (6)

The following lemma provides a useful concentration inequality for the sum of independent sub-exponential random
variables.

Lemma 4. [26, Proposition 5.16] Let X1, . . . , XN be independent zero-mean sub-exponential random variables, and K =
maxi ∥Xi∥ψ1

. Then for every α = [α1, . . . , αN]T ∈ RN and ϵ ≥ 0, it holds that

P
(∣∣∣ N∑

i=1

αiXi

∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−c ·min

(ϵ2

K2∥α∥22
,

ϵ

K∥α∥∞

))
, (7)

where c > 0 is an absolute constant. In particular, with α =
[
1
N , . . . , 1

N

]T
, we have

P
(∣∣∣ 1

N

N∑
i=1

Xi

∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−c ·min

(Nϵ2

K2
,
Nϵ

K

))
. (8)

4.3. Useful Lemmas

Throughout the following, we use f(·) to denote some non-linear activation function that does not grow faster than linear,
i.e., there exist scalars a and b such that f(x) ≤ a|x| + b for all x ∈ R. Then, if X ∼ N (µ, σ2) is a random Gaussian
variable, f(X) will be sub-Gaussian [19]. Note that the condition that f(·) does not grow super-linearly is satisfied by
popular activation functions such as ReLU, Sigmoid, and Hyperbolic tangent function.

Lemma 5. For i ∈ [N], let Xi ∼ N (µi, σ
2
i) be a random Gaussian variable. Then for every γ = [γ1, . . . , γN]T ∈ RN , we

have

Vmin∥γ∥22 ≤ E

(N∑
i=1

γif(Xi)

)2
 ≤ (N + 1)Umax∥γ∥22, (9)

where Vmin = mini∈[N] Var [f(Xi)] and Umax = maxi∈[N] E
[
f(Xi)

2
]

are dependent on {µi, σ2
i }i∈[N] and the non-linear

activation function f(·).
Proof. We have

E

(N∑
i=1

γif(Xi)

)2
 =

N∑
i=1

γ2
i E
[
f(Xi)

2
]
+
∑
i ̸=j

γiγjE[f(Xi)] · E[f(Xj)] (10)

=

N∑
i=1

γ2
iVar [f(Xi)] +

(
N∑
i=1

γiE[f(Xi)]

)2

(11)

≥
N∑
i=1

γ2
iVar [f(Xi)] (12)

≥ Vmin∥γ∥22. (13)

In addition, from (11), by the Cauchy-Schwarz Inequality, we obtain

E

(N∑
i=1

γif(Xi)

)2
 ≤ Umax∥γ∥22 +

(
N∑
i=1

E[f(Xi)]
2

)
∥γ∥22 (14)

≤ (N + 1)Umax∥γ∥22. (15)

This completes the proof.

Lemma 6. Let E ∈ Rm×D be a standard Gaussian matrix, i.e., each entry of E is sampled from standard Gaussian
distribution, and let W ∈ RD×D be a fixed matrix that has no zero rows. In addition, for a fixed vector b ∈ RD, let
B = [b,b, . . . ,b]T ∈ Rm×D. Then, when m = Ω(D), with probability 1− e−Ω(m), it holds that

1√
m
∥f(EWT +B)∥2 ≤ C

√
D, (16)

where C is an absolute constant and the non-linear activation function f(·) is applied element-wise.

Proof. Let wT
i ∈ R1×D be the i-th row of W. By the assumption that W has no zero rows, we have ∥wi∥2 > 0 for

all i ∈ [N]. Let H = EWT + B ∈ Rm×D. Then the (i, j)-th entry of H, denoted hij , follows the N
(
bj , ∥wj∥22

)
distribution. For any γ ∈ SD−1 and any fixed i, from Lemma 3, we obtain that

(∑D
j=1 f(hij)γj

)2
is sub-exponential with

the sub-exponential norm being upper bounded by C, where C is some absolute constant. Let Eγ be the expectation of(∑D
j=1 f(hij)γj

)2
. From Lemma 5, we obtain that it holds uniformly for all γ ∈ SD−1 that

Eγ ≤ C ′D, (17)

where C ′ is an absolute constant. In addition, from Lemma 4, for any ϵ ∈ (0, 1), we obtain

P

∣∣∣∣∣∣∣
1

m

m∑
i=1

 D∑
j=1

f(hij)γj

2

− Eγ

∣∣∣∣∣∣∣ ≥ ϵ

 ≤ 2 exp(−Ω(mϵ2)). (18)

From Lemma 1, there exists an ϵ-net Nϵ of SD−1 with
∣∣Nϵ

∣∣ ≤ (1 + 2/ϵ)D. Taking a union bound over Nϵ, we have that
when m = Ω

(
D
ϵ2 log

1
ϵ

)
, with probability 1− e−Ω(mϵ2), it holds for all γ ∈ Nϵ that

Eγ − ϵ ≤ 1

m
∥f(EWT +B)γ∥22 =

1

m

m∑
i=1

 D∑
j=1

f(hij)γj

2

≤ Eγ + ϵ. (19)

Then, since (17) holds uniformly for all γ ∈ SD−1, setting ϵ = 1
2 , Lemma 2 implies that when m = Ω(D), with probability

1− e−Ω(m),

1√
m
∥f(EWT +B)∥2 ≤ 2 max

γ∈N1/2

1√
m
∥f(EWT +B)γ∥2 (20)

≤ 2 max
γ∈N1/2

√
Eγ +

1

2
(21)

≤ C
√
D. (22)

Lemma 7. Let us use the same notation as in Lemma 6. When m = Ω(D2 logD), with probability 1− e−Ω(D logD), it holds
for all γ ∈ RD that

1√
m
∥f(EWT +B)γ∥2 >

√
Vmin

2
∥γ∥2, (23)

where Vmin = mini∈[D] Var[f(Xi)] with Xi ∼ N (bi, ∥wi∥22).

Proof. It suffices to consider the case that γ ∈ SD−1. From (19), we have that when m = Ω
(
D
ϵ2 log

1
ϵ

)
, with probability

1− e−Ω(mϵ2), it holds for all γ ∈ Nϵ that

1

m
∥f(EWT +B)γ∥22 ≥ Eγ − ϵ. (24)

In addition, from Lemma 5, we have that it hold uniformly for all γ ∈ SD−1 that

Eγ ≥ Vmin. (25)

Then, if setting ϵ = c√
D

for some small absolute constant c, we have that when m = Ω
(
D2 logD

)
, with probability

1− e−Ω(D logD), for all γ ∈ Nϵ,
1√
m
∥f(EWT +B)γ∥2 ≥

√
Eγ − ϵ. (26)

For any γ ∈ SD−1, there exists an s ∈ Nϵ such that ∥s− γ∥2 ≤ ϵ, and thus

1√
m
∥f(EWT +B)γ∥2 ≥ 1√

m
∥f(EWT +B)s∥2 −

1√
m
∥f(EWT +B)(γ − s)∥2 (27)

≥
√

Eγ − ϵ− 1√
m
∥f(EWT +B)∥2 · ϵ (28)

≥
√

Eγ − ϵ− cC, (29)

where (29) follows from Lemma 6 and the setting ϵ = c√
D

. Then, if c is set to be sufficiently small, from (25), we have for
all γ ∈ SD−1 that

1√
m
∥f(EWT +B)γ∥2 >

√
Vmin

2
. (30)

Lemma 8. Let Z ∈ Rm×D be a matrix with independent zero-mean sub-Gaussian entries. Suppose that the sub-Gaussian
norm of all entries of Z is upper bounded by some η > 0. Then, for any γ ∈ RD, we have that with probability 1− e−Ω(m),

1√
m
∥Zγ∥2 ≤ 2η∥γ∥2. (31)

Proof. Let zTi ∈ R1×D be the i-th row of Z ∈ Rm×D. From the definition of sub-Gaussian norm, we have that if a random
variable X is zero-mean sub-Gaussian with ∥X∥ψ2

≤ η, then

η = sup
p≥1

p−1/2(E[|X|p])1/p ≥ 2−1/2(E[|X|2])1/2, (32)

which implies
E[X2] ≤ 2η2. (33)

Then, we have
E[(zTi γ)2] ≤ 2η2∥γ∥22. (34)

In addition, from Lemma 3, we also have that (zTi γ)
2 is sub-exponential with the sub-exponential norm being upper bounded

by Cη2∥γ∥22. Then, from Lemma 4, we obtain that for any ϵ ∈ (0, 1), with probability 1− e−Ω(mϵ2),∣∣∣∣∣ 1m
m∑
i=1

(
(zTi γ)

2 − E
[
(zTi γ)

2
])∣∣∣∣∣ ≤ Cϵη2∥γ∥22, (35)

which implies

1

m
∥Zγ∥22 =

1

m

m∑
i=1

(zTi γ)
2 ≤ 1

m

m∑
i=1

E
[
(zTi γ)

2
]
+ Cϵη2∥γ∥22 ≤ 2η2∥γ∥22 + Cϵη2∥γ∥22, (36)

where the last inequality follows from (33). Setting ϵ = min{ 2
C , 1}, we obtain the desired result.

4.4. Proof of Theorem 1

Let E = [ϵ1, . . . , ϵm]T ∈ Rm×D. Then A can be written as A = f(EWT + B), where B = [b, . . . ,b]T ∈ Rm×D.
Then, we have

√
m∥γ̂ − γ∗∥2 <

√
2

Vmin

∥∥f(EWT +B)(γ̂ − γ∗)
∥∥
2

(37)

=

√
2

Vmin
∥A(γ̂ − γ∗)∥2 (38)

≤
√

2

Vmin
(∥Aγ̂ − y∥2 + ∥y −Aγ∗∥2) (39)

≤
√

8

Vmin
∥y −Aγ∗∥2 (40)

=

√
8

Vmin
∥Zγ∗∥2 (41)

≤ 4
√
2mη√
Vmin

· ∥γ∗∥2, (42)

where (37) follows from Lemma 7, (39) follows from the triangle inequality, (40) follows from the condition that γ̂ mini-
mizes (2), (41) follows from y = (A+ Z)γ∗. Finally, we use Lemma 8 to obtain (42).

5. More Visualization Results
In this section, we present additional samples generated by the DiT-XL/2 + DiffFit fine-tuning. Specifically, we demon-

strate its efficacy by generating high-quality images with a resolution of 512×512 on the ImageNet dataset, as illustrated
in Figures 9, 10, and 11. Additionally, we showcase the model’s capability on 8 downstream tasks by displaying its image
generation results with a resolution of 256×256, as depicted in Figures 12 through 19.

Correspondence to {xie.enze, li.zhenguo}@huawei.com

Figure 9: Visualization of DiffFit on ImageNet 512×512. Classifier-free guidance scale = 4.0, sampling steps = 250.

Figure 10: Visualization of DiffFit on ImageNet 512×512. Classifier-free guidance scale = 4.0, sampling steps = 250.

Figure 11: Visualization of DiffFit on ImageNet 512×512. Classifier-free guidance scale = 4.0, sampling steps = 250.

Figure 12: Visualization of DiffFit on Food 101.
Classifier-free guidance scale = 4.0, sampling steps = 250.

Figure 13: Visualization of DiffFit on ArtBench 10.
Classifier-free guidance scale = 4.0, sampling steps = 250.

Figure 14: Visualization of DiffFit on Stanford Cars.
Classifier-free guidance scale = 4.0, sampling steps = 250.

Figure 15: Visualization of DiffFit on Caltech 101.
Classifier-free guidance scale = 4.0, sampling steps = 250.

Figure 16: Visualization of DiffFit on DF20M.
Classifier-free guidance scale = 4.0, sampling steps = 250.

Figure 17: Visualization of DiffFit on Flowers 102.
Classifier-free guidance scale = 4.0, sampling steps = 250.

Figure 18: Visualization of DiffFit on CUB-200-2011.
Classifier-free guidance scale = 4.0, sampling steps = 250.

Figure 19: Visualization of DiffFit on SUN 397.
Classifier-free guidance scale = 4.0, sampling steps = 250.

References
[1] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative components with random forests. In

ECCV, 2014. 2
[2] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-stuff: Thing and stuff classes in context. In CVPR, 2018. 1
[3] Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estimation and distribution recovery of diffusion

models on low-dimensional data. arxiv, 2023. 5
[4] Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy as learning the score: theory for

diffusion models with minimal data assumptions. In ICLR, 2023. 5
[5] Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog bits: Generating discrete data using diffusion models with self-

conditioning. In ICLR, 2023. 4
[6] Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis. TMLR, 2022. 5
[7] Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger bridge with applications to score-

based generative modeling. In NeurIPS, 2021. 5
[8] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes over-parameterized neural networks.

In ICLR, 2019. 4
[9] Weihao Gao, Ashok V Makkuva, Sewoong Oh, and Pramod Viswanath. Learning one-hidden-layer neural networks under general

input distributions. In AISTATS, 2019. 4
[10] Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with landscape design. In ICLR, 2018. 4
[11] Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007. 2
[12] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. NeurIPS, 2021. 4
[13] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained categorization. In ICCV

workshops, 2013. 3
[14] Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence for score-based generative modeling with polynomial complexity. In NeurIPS,

2022. 5
[15] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-training for unified vision-language

understanding and generation. In ICML, 2022. 1
[16] Peiyuan Liao, Xiuyu Li, Xihui Liu, and Kurt Keutzer. The artbench dataset: Benchmarking generative models with artworks. arXiv,

2022. 3
[17] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer data with rectified flow. In

ICLR, 2023. 4
[18] Zhaoqiang Liu, Jiulong Liu, Subhroshekhar Ghosh, Jun Han, and Jonathan Scarlett. Generative principal component analysis. In

ICLR, 2022. 8
[19] Zhaoqiang Liu and Jonathan Scarlett. The generalized lasso with nonlinear observations and generative priors. In NeurIPS, 2020. 9
[20] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In 2008 Sixth Indian

Conference on Computer Vision, Graphics & Image Processing, 2008. 3
[21] Lukáš Picek, Milan Šulc, Jiřı́ Matas, Thomas S Jeppesen, Jacob Heilmann-Clausen, Thomas Læssøe, and Tobias Frøslev. Danish

fungi 2020-not just another image recognition dataset. In WACV, 2022. 2
[22] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine tuning text-to-

image diffusion models for subject-driven generation. arXiv, 2022. 1
[23] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arxiv, 2023. 4
[24] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman

Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. arXiv, 2023. 2
[25] Luca Venturi, Afonso S Bandeira, and Joan Bruna. Spurious valleys in one-hidden-layer neural network optimization landscapes.

JMLR, 2019. 4
[26] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arxiv, 2010. 8, 9
[27] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge J. Belongie. The caltech-ucsd birds-200-2011 dataset. 2011.

3
[28] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database: Large-scale scene recognition from

abbey to zoo. In 2010 IEEE computer society conference on computer vision and pattern recognition, 2010. 2
[29] Lvmin Zhang and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models. arXiv, 2023. 1
[30] Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu. Learning one-hidden-layer relu networks via gradient descent. In

AISTATS, 2019. 4
[31] Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery guarantees for one-hidden-layer neural

networks. In ICML, 2017. 4

