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In this supplementary material document, we cover addi-
tional implementation details (Section 1), more experimen-
tal results (Section 2), and user study details in Section 2.3.

1. Additional Implementation Details
1.1. Orientation Observation

We implement the 2D orientation of yaw θ and pitch ψ
as doing a yaw rotation and then a pitch rotation from the
default, forward orientation. In order to provide a linear
relationship between x̂Pt+1 − x̂Pt and ât for the networks
to learn, rotation actions ât are thus implemented by first
resetting to the default orientation and then rotating to the
new yaw and pitch angles

[θt+1, ψt+1] = x̂Pt+1 = x̂Pt ⊕ ât. (1)

When θ exceeds π or −π, it is reset to be within the range
by subtracting or adding 2π respectively. ψ is hard bounded
within the range [−π

2 ,
π
2 ].

We do not consider camera roll because it is common
practice not to have roll rotation (i.e., camera’s Up vector
is always vertically up) when capturing aesthetic photos in
indoor scenes. If a task requires to control the roll, it can
easily be added to our GAIT framework.

1.2. Training Process

We train GAIT-DrQ-v2 and GAIT-CURL in a single 3D
indoor scene. We run the Data Worker for 3M and 1.5M
data steps for GAIT-DrQ-v2 and GAIT-CURL respectively.

Data Worker: For every T = 15 steps: an episode
terminates in the Data Worker; this episode is pushed
to the shared Replay Buffer; the environment is reset
to prepare for the next episode. Each episode is re-
set to t = 0, a random initial pose within [−1, 1]5, a
exclusion pose list of four NULL exclusion poses, i.e.
[−1.5,−1.5,−1.5,−1.5,−1.5], every 5 episodes, or the
ending pose of the previous episode is appended to the ex-
clusion pose list, and a initialized recent actions list consist-
ing only the zero-action [0, 0, 0, 0, 0]. Staring with the ini-
tial observations x0, the agent takes {at}t=0,...,T−1 actions

according to the Actor Network at = π(xt), and observes
{xt+1}t=0,...,T−1.

Update Worker: We run the Update Worker with a 2 : 1
data-to-update step ratio with the Data Worker. At each up-
date step, a batch of n-step transitions [xt, at, rt, xt+n] is
sampled from the replay buffer, where n = 3, 1 for GAIT-
DrQ-v2 and GAIT-CURL respectively. With this batch the
Actor and Critic Networks are updated separately. The Ac-
tor and Critic Networks share an encoder, which is updated
with the Critic loss [18, 7]. For GAIT-CURL, the encoder is
additionally updated with the contrastive loss [7]

1.3. Network Architecture

DrQ-v2 [18] and CURL [7] share the network architec-
ture originally proposed in SAC-AE [19]. A notable feature
of this architecture is that it has an information bottleneck
on the image observations, where the flattened feature maps
of size 35× 35× 32 = 39200 is first reduced to size 50 af-
ter the linear layer, and then passed through a MLP with two
hidden layers of size 1024 before it eventually reaches the
output layer. In GAIT-DrQ-v2 and GAIT-CURL we include
additional observations (see Section 3.1 in the main text)
in addition to the image observation input and concatenate
them with the size 50 image features at the information bot-
tleneck. xDt and xSt both pass through a separate linear layer
with an outputs size of 128 before the concatenation. The
Actor and Critic both share this architecture: the Actor out-
puts a 5D action at, while the Critic takes at as an additional
input and outputs a scalar state-action value Q(xt, at). As
previously mentioned, the Actor and Critic Networks share
the same CNN encoder network.

Visual DRL literature commonly use this kind of shal-
low, simple network architecture as opposed to the usage
of large pre-trained backbone networks in Computer Vision
literature [9, 14, 5]. This is because Visual RL algorithms
such as DrQ-v2 [18] and CURL [7] are able to achieve ef-
ficient representation learning, while naively using a large
pre-trained backbone network for Visual RL actually re-
duces learning efficiency and training throughput [17].
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1.4. Multi-GPU Design

We use Ray [8] to scale GAIT-DrQ-v2 and GAIT-CURL
to multi-GPU. As shown in Figure 2 in main text , on a
compute node with 8 GPUs, we run 7 Data Workers and
1 Update Worker, so each worker occupies a GPU. Data
Workers and the Update Worker run Data steps and Update
steps asynchronously but synchronizes to maintain the 2 : 1
Data-Update step ratio every 15 steps.

1.5. Fast Replay Buffer and Image Augmentation

DrQ-v2 [18] introduces implementations of a fast re-
play buffer and fast image augmentation. The fast replay
buffer is composed of a replay storage and a replay loader.
The replay storage receives transitions from the data loop
(or the data Worker in multi-GPU GAIT). Once an episode
is finished, it is written to disk as a Numpy [3] .npz file.
In the update loop (or the update worker in multi-GPU
GAIT), the replay loader loads new episode .npz files to
memory, randomly samples a batch of transitions from the
loaded episode. Here, the batch is loaded in page-locked
memory by using PyTorch Dataloader’s Pin Memory fea-
ture [12, 11].

This allows for significant speedup of data transfer from
CPU to GPU memory [4]. This implementation also leads
to 10x larger replay buffer capacity. We scale this replay
buffer implementation to multi-GPU by using a replay stor-
age for each Data Worker and have the Replay Loader to
run in the update worker. We also integrate this fast, multi-
GPU replay buffer with GAIT-CURL, which by default has
a naive in-memory Replay Buffer.

The DrQ-v2 fast image augmentation [18] exploits
the fast GPU computation provided by the PyTorch [11]
grid_sample function. It is a flow-field image sampling
method, which is used to do random shift augmenta-
tion. Similarly, we replace CURL’s naive CPU random
crop augmentation [7] with one implemented with PyTorch
grid_sample [11]. This leads to a 7% more throughput than
the naive CPU random crop augmentation.

1.6. Gaussian Smoothness Function Visualization

In Figure S1, we visualize the Gaussian Temporal
Smoothness function with mean ||x|| − ||at−i||, where
||at−i|| = 0.2, 0.3, 0.4 and standard deviation 1

2 ||at−i|| =
0.1, 0.15, 0.2 for green, red, purple respectively.

1.7. CMA-ES

Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [2] is a stochastic, gradient-free optimization
method for the non-linear, non-convex functions in the con-
tinuous domain. As opposed to a Deep Neural Network, it
has no observations and no training process. Instead, it opti-
mizes the given fitness function by repeatedly trying differ-

Figure S1: Gaussian Temporal Smoothness functions with
mean ||x||−||at−i||, where ||at−i|| = 0.2, 0.3, 0.4 and stan-
dard deviation 1

2 ||at−i|| = 0.1, 0.15, 0.2 for green, red, pur-
ple respectively.

ent input variable values. We use CMA-ES in the GAIT en-
vironment following a similar setup as GAIT DRL agents.
An aesthetic indoor tour sequence is produced by running
CMA-ES for 15 separate optimizations, where each opti-
mizes the GAIT reward of the current step rt by trying dif-
ferent 5D actions at. The greedy action, which produces the
highest GAIT reward is chosen as the action for the current
step

a∗t = argmax
at

(rt). (2)

Note that this optimization process does not consider GAIT
observations xt. In our experiments we use the pycma pack-
age [1] to implement CMA-ES for GAIT.

Unlike our GAIT DRL agent, which explores the 3D in-
door scene during the training process, CMA-ES chooses
actions that only optimizes the current reward. As shown in
Figure S8, CMA-ES gets stuck next to an exclusion pose,
because the small actions of staying in that view give the
highest immediate reward. On the other hand, a GAIT DRL
agent would be able to sacrifice the reward of one step to
get out of that pose, knowing that it is possible to get much
higher later rewards.

Compared to a GAIT DRL agent, CMA-ES does not
scale as easily. CMA-ES requires more than an hour to
generate a sequence, while a GAIT DRL agent can gen-
erate a sequence in less than a second. Therefore, a GAIT
DRL agent can repeatedly generate aesthetic indoor tour se-
quences in a scene with different initial poses and different
exclusion poses and distances, while CMA-ES needs to re-
run the optimization process if a different initial pose or a
different exclusion pose is given.

1.8. MPC

Model Predictive Control (MPC) [10] is a classic plan-
ning algorithm used to solve control problems, where a
model of the environment is used to predict future timesteps



to choose the current action. Here we detail our implemen-
tation of MPC with the GAIT framework. To decide the
next action, we roll out trajectories of length k = 5 from
the current state, and choose the action whose trajectory
has the maximum cumulative reward. To deal with the 5D
continuous action space, we randomly sample n = 8 ac-
tions from the action space for each roll-out step [6]. With
our implementation of MPC, it takes 1.25 hours to generate
a sequence. Its average evaluation reward is significantly
lower than GAIT-DrQ-v2, GAIT-CURL, and CMA-ES, be-
cause it is unable to explore the 5D continuous action space
efficiently.

1.9. 3D Indoor Scenes in Replica Dataset

We perform experiments in the Replica [15] dataset us-
ing the Habitat-sim Simulator [13, 16]. There are a total of
18 scenes in Replica. We selected 6 out of the 18 that con-
tain the least amount of visual artifacts, has a box-shaped
room and a distinct appearance and color distribution in
comparison to the other 5. In the paper, we test GAIT on
three scenes, Room0, Apartment2, Office3, which are ab-
breviated as Room, Apartment, and Office. In this supple-
mentary material, we use their full names of Room0, Apart-
ment2, Office3. We report some results on three additional
scenes, Room1, Apartment0, and Office0.

For some 3D indoor scenes the furniture placements and
visual features are more diverse in some areas. This causes
a skewed distribution of aesthetic scores. In our experi-
ments, we notice that in Office0 and Office3, GAIT agents
are mostly attracted to the blue display, which has a dis-
tinct color from the neighboring region and dense informa-
tion from the world map on the display (See Figure S13 and
S15). Views containing the blue display indeed have higher
aesthetic scores than the others. Similarly, in Room1, GAIT-
CURL agent is attracted to the pillows on the bed, where one
pillow has an owl pattern on it (see Figure S17).

1.10. Interpolation for Generating Video Clips

Given the generated sequence of 16 camera poses includ-
ing the initial pose, 9 intermediate camera poses are further
interpolated between any two adjacent poses thus a video
clip of 5 seconds is produced. For an intermediate camera
pose, its rotation is evaluated with spherical linear interpo-
lation between the adjacent two frames while its position is
linearly interpolated.

1.11. Training Hardware

We run single-GPU and multi-GPU training on 8-GPU
compute nodes. It is equipped with dual Intel Xeon Silver
4214R 2.40GHz CPUs, 8 GPUs of NVIDIA RTX A5000
(24GB VRAM), and 251GB memory.

Table S1: GAIT Environment

Hyperparameter Value
Evaluation every episodes 300
Evaluation episodes number 10
Action a dimensions 5
Pose xP dimensions 5
Azimuth orientation range [−π, π]
Elevation orientation range [−π

2 ,
π
2 ]

Step sizes [0.25, 0.25, 0.25, 0.25, 0.25]
Episode length T 15
Out of boundary penalty rB −10
Diversity exclusion poses number 4
Smoothness recent actions window 3
Smoothness Gaussian translation denominator 2
Smoothness Gaussian rotation denominator 1
Camera FOV 60
Aesthetic model image resolution 240× 240
Data Worker model sync per step 30
Data Worker step number sync per Data step 15
Update Worker model sync per step 15
Update Worker step number sync per Update step 10
Data-Update step ratio 2 : 1

1.12. Full Hyperparameter List

Table S1, S2, S3, and S4 lists our hyperparameters.

Table S2: Shared network architecture of GAIT-DrQ-v2
and GAIT-CURL, listed in the order of layers

Hyperparameter Value
Encoder input image observation resolution 84× 84
Encoder number of filters [32, 32, 32, 32]
Encoder kernel size [3, 3, 3, 3]
Encoder stride [2, 1, 1, 1]
Encoder output image features size 32 · 35 · 35 = 39200
Information bottleneck image feature size 50
Diversity observation hidden size 128
Smoothness observation hidden size 128
MLP hidden size [1024, 1024]

Table S3: GAIT-DrQ-v2

Hyperparameter Value
Total Data steps 3 · 106
Linearly decayed noise schedule 1 · 106
Discount factor γ 0.99
No update before 4000
Replay Buffer size 106

n-step TD 3
Batch size 256
learning rate 10−4

Image observation resolution 84× 84
Critic τ 0.01

2. Additional Experimental Results
2.1. Aesthetic, Diversity, and Smoothness Scores

Table S7, S8, and S9 shows the aesthetics, diversity, and
smoothness scores for Figure 4, 6, and 7 in main text, al-
lowing for a quantitative evaluation of GAIT. Each cell in



Table S4: GAIT-CURL

Hyperparameter Value
Total Data steps 1.5 · 106
Discount factor γ 0.99
No update before 4000
Replay Buffer size 106

n-step TD 1
Batch size 512
Critic learning rate 10−3

Critic β 0.9
Critic τ 0.01
Critic target update frequency 2
Actor learning rate 10−3

Actor β 0.9
Actor log std min −10
Actor log std max 2
Actor update frequency 2
Encoder learning rate 10−3

Encoder τ 0.05
CURL contrastive learning latent dimensions 128
SAC initial temperature 0.1
SAC α learning rate 10−4

SAC α β 0.5
Image observation resolution before random crop 100× 100
Image observation resolution after random crop 84× 84

the score tables corresponds to a frame in the sequence vi-
sualization figures. Readers are encouraged to view the se-
quence visualization figures and the score tables side by side
to gain a better understanding of the sequences under the
GAIT reward.

2.2. Sequence Visualizations and Training Curves
in Additional Scenes

In the main text, we only have space to report sequence
visualization figures in Room0 and training curves on av-
erage evaluation return. In Figure S12, S13, S14, and S15,
we replicate the comparison conditions for (a) Trajectory
Generation, (b) Diversity, and (c) Smoothness (Figure 4, 6,
7 in main text) in Apartment2 and Office3 with DrQv2 and
CURL respectively. Specifically, for (a) Trajectory Gener-
ation sequences, we show that 3 sequences, with two initial
poses close to each other and one far from the other two,
all converge to target poses that are close; for (b) Diversity,
we show that 3 sequences, with the same initial pose and 0,
1, 2 prior ending poses as exclusion poses respectively, all
manage to avoid the exclusion poses while keeping a high
aesthetics and smoothness score; for (c) Smoothness, we
compare 2 sequences with the same initial pose, generated
with agents trained with and without the Temporal Smooth-
ness Regularization.

In Figure S16 and S17, we show 3 sequences per 3 ad-
ditional scenes (Room1, Apartment0, Office0) for GAIT-
DrQ-v2 and GAIT-CURL respectively. Each 3 sequences
have the same initial pose and use the 0, 1, 2 prior ending
poses as exclusion poses, resembling the Diversity compar-

ison sequences.
A training curve refers to the agent’s average evalua-

tion return over the training process (See Section 4.4 in
main text). In Figure S9, we report the training curves for
GAIT-DrQ-v2 and GAIT-CURL on three additional scenes
(Room1, Apartment0, Office0).

In Figure S10, we report the training curve distributions
over 3 seeds for GAIT-DrQ-v2 and GAIT-CURL on three
scenes (Room0, Apartment2, Office3). Both GAIT-DrQ-v2
and GAIT-CURL are not sensitive to random seeds.

In Figure S11, we compare training curves of GAIT-
DrQv2 on Room0 with the default settings. The single-GPU
version is able to converge with fewer training steps. This
is because its Data loop and Update loop uses the same set
of networks, so that the updated networks are immediately
used in Data collection. On the contrary, the Data Work-
ers in the multi-GPU version have to delay the synchroniza-
tion of the updated models from the Update Worker in order
to have an improved training throughput while sacrificing
learning efficiency. We tested different model synchroniza-
tion frequencies that achieve the shortest time-to-converge
and a balance between throughput and efficiency.

2.3. User Study

We conducted the user study in three scenes with differ-
ent object placement and varying colors, including Room
0, Office 3, and the living room of Apartment 2. In each
scene, three initial camera poses were randomly selected in
the room. We generated three view sequences (with 0, 1, 2
ending pose exclusion, respectively) starting from each ini-
tial pose. Furthermore, the corresponding video clip was
produced based on each view sequence as described in Sec-
tion 3.4 in the main manuscript. Since we trained our model
in both GAIT-DrQ-v2 and GAIT-CURL, we compare these
two methods to see if one method ourperforms the other.
Furthermore, we compare the generated tours in CMA-ES
with those generated in GAIT-DrQ-v2. For simplicity, we
also use Method C, M , and D to represent the method
GAIT-CURL, CMA-ES, and GAIT-DrQ-v2 correspondingly
in the following description and reports in this section (Sec-
tion 2.3). In other words, given any initial pose, participants
were asked to compare three video clip pairs of C vs. D
and M vs. D because of three exclusion settings of ending
poses. After watching the two video clips in a pair one by
one, each participant were asked to answer questions Q1
and Q2 (as reported in Table S5). After the three pairs, Q3
and Q4 (in Table S5) were asked to rate the two methods’
overall performance. In addition, to overcome the effect
from previous video clips, the order of playing the video
clips was randomized among participants and among dif-
ferent trials.

The users’ votes are summarized in Figure S2 and Fig-
ure S3. We find that users’ voting pattern varies among dif-
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Figure S2: The summation of user votes in Q1 and Q2,
reflecting the general subjective preference to the tour
smoothness and the content aesthetics. The votes for
Method D, C, and M are colored in green, red, and yel-
low, respectively.

ferent scenes. Hence, the votes are further illustrated based
on scenes in Figure S4, Figure S5, Figure S6, and Figure
S7. According to the resulting user votes, when being asked
for which method produces a higher diversity of the view
content, 80.0% participants agreed that GAIT-DrQ-v2 out-
performs CMA-ES and 73.3% favor GAIT-DrQ-v2 rather
than GAIT-CURL. On the other hand, 51.1%, 48.9%, and
38.9% users in the three scenes chose GAIT-DrQ-v2 over
GAIT-CURL as the method for generating smooth videos.

Since our experiment is in Two-alternative forced choice
(2AFC), we analyze the user voting pattern using binomial
test (reported in Table S6). According to the analysis,
in view diversity in all three evaluated scenes, GAIT-DrQ-
v2 outperforms CMA-ES significantly in both the binomial
test and the voting percentage. However, although majority
of participants prefer GAIT-DrQ-v2 over GAIT-CURL and
CMA-ES in view diversity, it does not always demonstrate
significance in the voting distribution in different scenes.
In content aesthetics evaluation, there is no significance be-
tween CMA-ES and GAIT-DrQ-v2. It is possible that dif-
ferent participants’ subjective metrics regarding aesthetics
vary greatly. In the overall rating, the model GAIT-DrQ-v2
gains most of the participants’ preference.
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Figure S3: The summation of user votes in Q3 and Q4, re-
flecting the general subjective preference to the view diver-
sity in different methods and the preference to the overall
results in these methods. The votes for Method D, C, and
M are colored in green, red, and yellow, respectively.
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Figure S4: User votes in Q1 per scene. In each scene, the
first and second comparisons representCvs.D andMvs.D.
Green, red, and yellow bars refer to votes for Method D, C,
and M , respectively.
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Figure S5: User votes in Q2 per scene. In each scene, the
first and second comparisons representCvs.D andMvs.D.
Green, red, and yellow bars refer to votes for Method D, C,
and M , respectively.



Question Specific Statement When To Ask Total
Sample
Number
per User

Q1 “Which tour do you think is better regarding video smoothness?” Each tour pair 54
Q2 “Which tour do you think provides better aesthetic content?” Each tour pair 54
Q3 “After watching the three tours generated using the two methods,

which method do you think provides higher view diversity in the tour?”
Each initial pose 18

Q4 “After watching the three tours generated using the two methods
respectively, overall which method do you think can provide better

aesthetic tours?”

Each initial pose 18

Table S5: Our user study questionnaire. Q1 and Q2 were asked after users watch every pair of tours. Q3 and Q4 were asked
after watching the three generated sequences with the exclusion setting.

Scene name C vs. D
Smooth-

ness

C vs. D
Content

M vs. D
Smooth-

ness

M vs. D
Content

C vs. D
View

Diversity

M vs. D
View

Diversity

C vs. D
Overall

M vs. D
Overall

Room 0 0.9161 0.1133 0.0161 0.3616 0.0000 0.0000 5.948e-5 0.0000
Office 3 0.9161 0.9161 0.5847 0.8555 0.0000 0.0000 0.3616 0.0000

Apartment 2 7.657e-5 0.0149 0.0000 0.0987 0.9161 0.0000 0.0000 0.0987
Table S6: Binomial test in the comparisons in each scene. The table shows each p-value in Binomial test for all the pair
comparisons in each scene. The significant p-values (p value is smaller than 0.05) are highlighted.
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Participant voting summary in Q3 comparison pairs grouped by scenes.

Figure S6: User votes in Q3 per scene. In each scene, the
first and second comparisons representCvs.D andMvs.D.
Green, red, and yellow bars refer to votes for Method D, C,
and M , respectively.
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Figure S7: User votes in Q4 per scene. In each scene, the
first and second comparisons representCvs.D andMvs.D.
Green, red, and yellow bars refer to votes for Method D, C,
and M , respectively.



Table S7: Aesthetic and smoothness scores for Figure 4 in main text . The cells in this table correspond to the frames in
Figure 4 in main text. The values in each cell are the aesthetic score and smoothness score separated by a bar |. Seq. 0 and
1 shows similar aesthetic and smoothness scores over all steps. Although started with different initial poses, the 3 sequences
all move to views with high aesthetic scores and keep a decent smoothness score after step 3.

rA|rS Initial pose Time step 3 Time step 6 Time step 9 Time step 12 Time step 15
Seq. 0 N/A 1.04|0.22 4.61|0.78 5.41|0.60 4.86|0.90 4.64|0.82
Seq. 1 N/A −0.30|0.21 4.32|0.80 5.25|0.58 4.52|0.89 4.40|0.83
Seq. 2 N/A 0.57|0.31 2.22|0.42 5.70|0.84 3.86|0.85 4.76|0.84

Table S8: Aesthetic, Smoothness, and diversity scores for Figure 6 in main text . The cells in this table correspond to
the frames in Figure 6 in main text. The values in each cell are the aesthetic score, diversity score, and smoothness score
separated by bars |. seq. 0 keeps a diversity score of 1 since there is no exclusion pose. seq. 1 also keeps a diversity score of
1 except for a 0.99, as it is able to avoid the exclusion pose easily. seq. 2’s manages to avoid the first exclusion pose, but gets
a bit too close to the second exclusion pose because it also has to keep aesthetics and smoothness scores high. Eventually it
manages to get further from exclusion pose.

rA|rD|rS Initial pose Time step 3 Time step 6 Time step 9 Time step 12 Time step 15
Seq. 0 N/A 4.13|1|0.32 6.24|1|0.59 5.71|1|0.63 4.69|1|0.94 3.67|1|0.59
Seq. 1 N/A 4.35|1|0.30 4.94|0.99|0.70 4.96|1|0.48 4.65|1|0.92 4.89|1|0.51
Seq. 2 N/A 3.94|1|0.32 4.66|0.94|0.77 4.59|0.84|0.75 3.83|0.27|0.31 3.93|1|0.90

Table S9: Aesthetic and smoothness scores for Figure 7 in main text . The cells in this table correspond to the frames
in Figure 7 in main text. The values in each cell are the aesthetic score and smoothness score separated by bars |. Without
the smoothness constraint, seq. 1 converges to the near global optimal view and stays there to achieve maximum return.
However, this results in a trivial aesthetic sequence. With the smoothness constraint, seq. 0 keeps a steady camera pose
trajectory while maintaining a high aesthetics score and smoothness score.

rA|rS Initial pose Time step 3 Time step 6 Time step 9 Time step 12 Time step 15
Seq. 0 N/A 2.07|0.21 5.66|0.70 4.91|0.68 4.10|0.85 4.89|0.94
Seq. 1 N/A 4.66|1 5.50|1 5.41|1 5.59|1 5.32|1

Initial pose time step 3 time step 6 time step 9 time step 12 time step 15 trajectories

Figure S8: CMA-ES in Room0. It is stuck in this view next to the exclusion pose. This is because it takes greedy actions, but
in this case, the exclusion pose gives a portion of possible actions low diversity score, while the rest of the actions all give a
lower reward than staying at this view by taking small actions to satisfy the smoothness constraint.
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Figure S9: The training in the three additional scenes.
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Figure S10: The distribution of training. The average and
the standard deviation are evaluated by 3 runs of training
with different random seeds.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time steps 1e6

10

0

10

20

30

40

re
wa

rd

Single-GPU
Multi-GPU

Figure S11: The training with different number of GPUs.
There are 8 GPUs used for multi-GPU training. Multi-GPU
converges slower than single-GPU training at the beginning,
but the difference is very minor after 2 million time steps.
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Figure S12: The camera pose trajectories generated by the agent trained with GAIT-DrQ-v2 in Apartment2. (a) with different
initial camera poses, the cameras are all transformed to a similar pose in the end. (b) comparison of diversity regularization,
with 0, 1 and 2 exclusion regions for sequence 0, 1 and 2 respectively. (c) comparison of with and without temporal smooth-
ness regularization for sequence 0 and 1 respectively.
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Figure S13: The camera pose trajectories generated by the agent trained with GAIT-DrQ-v2 in Office3. (a) with different
initial camera poses, the cameras are all transformed to a similar pose in the end. (b) comparison of diversity regularization,
with 0, 1 and 2 exclusion regions for sequence 0, 1 and 2 respectively. (c) comparison of with and without temporal smooth-
ness regularization for sequence 0 and 1 respectively.
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Figure S14: The camera pose trajectories generated by the agent trained with GAIT-CURL in Apartment2. (a) with different
initial camera poses, the cameras are all transformed to a similar pose in the end. (b) comparison of diversity regularization,
with 0, 1 and 2 exclusion regions for sequence 0, 1 and 2 respectively. (c) comparison of with and without temporal smooth-
ness regularization for sequence 0 and 1 respectively.
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Figure S15: The camera pose trajectories generated by the agent trained with GAIT-CURL in Office3. (a) with different initial
camera poses, the cameras are all transformed to a similar pose in the end. (b) comparison of diversity regularization, with
0, 1 and 2 exclusion regions for sequence 0, 1 and 2 respectively. (c) comparison of with and without temporal smoothness
regularization for sequence 0 and 1 respectively.
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Figure S16: The camera pose trajectories generated by the agent trained with GAIT-DrQ-v2 in the three additional scenes. In
each sub-figure, the sequence 0, 1 and 2 are generated with 0, 1 and 2 exclusion regions respectively.
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Figure S17: The camera pose trajectories generated by the agent trained with GAIT-CURL in the three additional scenes. In
each sub-figure, the sequence 0, 1 and 2 are generated with 0, 1 and 2 exclusion regions respectively.
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