
Supplemental Material for NaviNeRF

1. Representing 3D Scenes with NeRF
As an implicit 3D reconstruction, Neural Radiance

Fields (NeRF) maps scenes into a multi-layer perceptron
(MLP) from limited views, which takes the position x ∈ R
and viewing direction d ∈ S as input, for predicting emitted
color c and volume density σ of the targeted scene:

x = (x, y, z), d = (θ, ϕ), c = (r, g, b)

where the x, y, z represent the 3D location coordinate val-
ues and θ, ϕ denote the 2D viewing direction, which ulti-
mately implements a 5D vector-valued function. This con-
tinuous 5D scene representation is approximated by the
MLP function FΘ .

FΘ : (x,d) → (c, σ)

by optimizing the weights Θ , the network map from 5D
input to the corresponding volume density and directional
emitted color. We also use the position encoding function
in [4] to map each dimension of x with Fourier features:

γ(x) = [sin(20x), cos(20x), ..., sin(2L−1x), cos(2L−1x)]

Typically, γ is a mapping from R into a higher dimensional
space R2L. For the inner refinement branch, we employ
the StyleNeRF baseline, to formalize NaviNeRF representa-
tions by conditioning NeRF with style vectors w as follows:

ζnw(x) = gnw◦gn−1
w ◦. . .◦g1w◦γ(x), where w = M(z), z ∈ Z

where M is an 8-layer mapping network that maps noise z
from the Gaussian space Z to the intermediate space W+.
giw is the ith layer MLP whose weight matrix is modulated
by the input style vector w. ζnw is the nth layer feature of
that point. Based on the conducted features, the model can
then predict emitted color and volume density:

cw(x,d) = hc ◦ [ζnc
w (x), γ(d)]

σw(x) = hσ ◦ ζnσ
w (x)

where hc and hσ can be a linear projection or 2-layer MLPs.
We take the default configuration of StyleNeRF that assume
nc > nσ as the visual appearance generally needs more

capacity to model than the geometry. For the image I ∈ R,
the color of pixels is calculated by the volume rendering
function which takes each camera ray r for each pixel:

Iw(r) =

∫ ∞

0

pw(t)cw(r(t),d)dt,

where pw(t) = exp

(
−
∫ t

0

σw(r(s))ds

)
· σw(r(t))

where p denotes a given camera pose and each ray r(t) =
o + td is calculated based on the original camera o. For
the outer navigation branch, the image is generated in the
same configuration but without the mapping network.

2. Datasets Details
FFHQ [22]: consists of 70k high-quality images, each

with a resolution of 1024×1024. The dataset covers a
wide range of global variation in terms of age, gender, and
ethnicity, and also includes fine-grained representations
such as accessories like eyeglasses, sunglasses, hats, and
so on. To simplify the camera setup, we assume that the
human face is captured at the origin, and the camera is
located on the unit sphere, pointed towards the origin with
a fixed field of view. The pitch and yaw of the camera
are sampled from either a uniform or Gaussian distribution.

AFHQ [23]: comprise 15k high-quality images at a res-
olution of 512×512. The dataset includes three categories
of cat, dog, and wildlife. The training images are merged di-
rectly, without the utilization of label information. Similarly
to the FFHQ dataset, the pitch and yaw are sampled from a
Gaussian distribution. Due to the inclusion of multiple do-
mains and diverse images of various breeds (at least eight
per domain), AFHQ presents a more challenging image-to-
image translation problem. All images are aligned verti-
cally and horizontally to center the eyes.

2.1. Training Protocol

The sampled latent code z is from a Gaussian distribu-
tion of dimension 512. We append the shifts to z through
a learnable orthonormal matrix S and an 8-layer fully-
connected network M . The output matrix from M is of size
18×512, where the shifted (9th-18th) style vectors are fed
two-to-one into (5th - 9th) NeRF MLP layers. The decoder



is designed as a 4-layer MLP with Adam activation. We use
batch sizes of 64 and 32 for the FFHQ and AFHQ datasets,
respectively, taking into consideration their different scales.
The default learning rate is 0.0005. The sampling dimen-
sion of z is set to 512, where the w vector is formed as
18×512. For pre-training, we follow the instructions out-
lined in StyleNeRF but resize all input data to 256×256.
By default, we set batch size to 64 for every dataset, and
the learning rate of generator and discriminator are set to
0.0025.

3. Competitive Models
We conduct the qualitative and quantitative comparison

on NaviNeRF with three typical 3D-aware GANs (pi-GAN,
GIRAFFE, StyleNeRF) and two editing-oriented models
(FENeRF, CGOF++).

pi-GAN [24]: Since pi-GAN does not provide a pre-
trained model for the FFHQ dataset, we train pi-GAN us-
ing the same configuration as the other 3D-aware GANs for
comparison purposes.

GIRAFFE [25]: As GIRAFFE can be considered an
improvement of GRAF, we only include GIRAFFE in our
competitive experiments. We load the pre-trained check-
points of GIRAFFE on the FFHQ dataset according to the
official implementation.

StyleNeRF [26]: As our baseline model in the cur-
rent stage, we pre-train a StyleNeRF generator on both the
FFHQ and AFHQ datasets. In the competitive experiments,
we load its pre-trained checkpoints on the FFHQ.

FENeRF [45]: We adopt the default implementation of
FENeRF on the FFHQ to demonstrate the partial control
capacity.

CGOF++ [13]: We utilize the author’s implementation
of CGOF++ on the FFHQ to demonstrate the partial control
capacity.

4. Additional Results
In Figure 10, we present additional results that demon-

strate the capacity of NaviNeRF to identify and manipulate
fine-grained attributes. To verify the ability of the disentan-
glement modules in identifying these attributes, we further
removed the outer navigation branch and inner refinement
procedure (that means we append inner shifts on every 18
dimension of w). As illustrated in Figure 9, without the
disentanglement modules, the model can only manipulate
global style and fails to discover underlying semantic direc-
tions. Moreover, in Figure 11 and 12, we showcase the pre-
training results for the FFHQ and AFHQ datasets. How-
ever, even when the model is fully configured as StyleNeRF
during pre-training, artifacts still appear in the generated
images for the AFHQ dataset, as demonstrated in Figure

12. Despite the ambiguous and challenging data, the model
still achieves fine-grained awareness, which validates the
robustness of NaviNeRF. In future work, we plan to employ
more 3D-aware models to improve the quality of generated
scenes. Additionally, we will consider using GAN inversion
technology to achieve real-time attributes manipulation by
interactive controls from the user.

Figure 9. The generation results without outer navigation branch
and inner refinement procedure. The model can only manipulate
on global style but fails to discover underlying semantic directions.



Figure 10. Additional results of fine-grained 3D disentanglement of NaviNeRF.



Figure 11. Pre-training results on the FFHQ 2562.

Figure 12. Pre-training results on the AFHQ 2562.


