
OFVL-MS: Once for Visual Localization across Multiple Indoor Scenes
—Supplementary Material—

In this supplementary material, we provide additional in-
formation to further understand our proposed OFVL-MS.
In Sec. 1, we present more details on network architecture.
In Sec. 2, we further detail the experimental setups for all
datasets. In Sec. 3, we provide a detailed analysis of the in-
cremental experiments. In Sec. 4, we introduce the collec-
tion and fabrication process of the proposed LIVL dataset.
In Sec. 5, we provide various qualitative results on bench-
marks.

1. Network Architecture
OFVL-MS rescales the image to 640× 480 as input and

predicts the scene coordinates and uncertainty feature maps
with the resolution of 60× 80.

Backbone. As mentioned in the main paper, we utilize
ResNet [3] with slight modifications as the backbone to ex-
tract features from the input images. Specifically, we re-
move the max pooling layer, average pooling, and fully con-
nected layer, and change the stride of four residual blocks
as (1,1,2,2) to ensure that the resolution of intermediate fea-
tures Fn is H/8 ×W/8, where H and W mean the height
and width of the original image. Besides, the output chan-
nels of pre-layer and four residual blocks of all OFVL-
MS families are set to (16, 64, 128, 256, 512), as shown in
Fig. 1.

Regression Layer. Our regression layer is designed as
a fully connected layer, as shown in Fig. 2. The intermedi-
ate features Fn are fed into a set of convolutional layers to
predict scene coordinates D̂n and uncertainty Ûn.

2. Implementation Details
2.1. Gradient Estimation of Scores sn,i

In the backward pass of the network, the gradient of the
scores sn,i is formulated as:

∇sn,iLn,i =
∂Ln,i

∂Θ(sn,i)

∂Θ(sn,i)

∂sn,i
. (1)

Since the gradient of the indicator function Θ(·) is zero
at almost all points, the scores sn,i cannot be directly op-
timized using gradient descent. To avoid this dilemma, we
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Figure 1: The modified architecture of ResNet that OFVL-
MS families use.

utilize a straight gradient estimator [1] and modify the gra-
dient of sn,i as:

∇sn,iLn,i =
∂Ln,i

∂Θ(sn,i)
. (2)

2.2. Training Details.

We view the visual localization of each scene as an in-
dividual task. Since each task has its own dataset domain,
we use multiple GPUs to optimize these tasks, where the
task-shared parameters are optimized in the global group
while the task-specific parameters are optimized in the task-
specific group, which is implemented by defining multiple
communication groups in DistributedDataParallel of Py-
Torch. For each scene, we utilize 2 GPUs for training.

OFVL-MS employs Adamw solver for optimization with
an initial learning rate of 1.4 × 10−3 and weight decay of
0.05 for 200000 iterations with a batch size of 4 when train-
ing 7-Scenes dataset [10]. Besides, we apply the cosine an-
nealing policy to adjust learning rate with warmup of 250 it-
erations. For data augmentation, we follow HSCNet [6] and
apply affine transformations to each training image. Techni-
cally, we translate, rotate, and scale the image by values uni-
formly sampled from [−20%, 20%], [−30◦, 30◦], [0.7, 1.5]
respectively. We also augment the images with additive
brightness changes uniformly sampled from [−20, 20].

For 12-Scenes dataset [11], OFVL-MS utilizes Adamw
with an initial learning rate of 2.4 × 10−3 for 200000 iter-
ations with a batch size of 4. Considering the training tra-
jectories almost coincide with test trajectories in 12-Scenes
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Figure 2: Regression Layer Architecture.



Runtime (ms) Med. Err. Acc.
DSAC++ [2] 68.2 0.036,1.10 74.4
HSCNet [6] 81.7 0.03,0.9 84.8
OFVL-MS18 58.4 0.025,0.80 85.20
OFVL-MS34 71.6 0.023,0.74 87.37
OFVL-MS50 86.9 0.021,0.69 88.72

Table 1: The runtime that each method occupies on 7-
Scenes dataset.

dataset, we do not employ data augmentation and set weight
decay to 0.

We follow [6] and define the evaluation metrics as: (i)
the median positional errors. (ii) the median rotational er-
rors. (iii) the percentage of images whose positional and
rotational errors less than 5cm and 5◦. The positional er-
rors ∆t and rotational errors ∆R are formatted as:

∆t = ||t̂− t||2,

∆R =
||Rod(R̂TR)||2

π
× 180,

(3)

where t̂ means predict translation vector, t means ground
truth translation vector, R̂ means predict rotation matrix, R
means ground truth rotation matrix, Rod(·) means the Ro-
driguez formula used to transform the rotation matrix into a
rotation vector.

2.3. Pose Estimation

OFVL-MS utilizes the same parameters setting as in [2].
The threshold of reprojection errors is set to 10 pixels to
reject outliers. Moreover, OFVL-MS selects 256 groups
2D pixel coordinates-3D scene coordinates corresponding
to refine until convergence for a maximum of 100 iterations.

2.4. Run Time

We utilize 2 NVIDIA Tesla V100 for training each scene
and leverage distributed training to realize visual local-
ization across scenes, which takes about 17/31/32 hours
when training OFVL-MS18/34/50 on both 7-Scenes and
12-Scenes datasets.

At test time, it takes about 60ms, 70ms, and 85ms for
OFVL-MS18, OFVL-MS34, and OFVL-MS50 to localize
an image. Scenes coordinates prediction takes about 25 −
45ms depending on the network size and pose optimization
takes about 30− 60ms.

As shown in Tab. 1, OFVL-MS families achieve superior
localization performance with fast inference speed.

3. Generalize to New Scenes
We conduct two experiments to verify the capability of

OFVL-MS to generalize to New Scenes. EXP1: we utilize
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Figure 3: The dataset collection equipment.

the model trained on 12-Scenes and conduct the generaliza-
tion experiments on 7-Scenes. EXP2: we utilize the model
trained on 7-Scenes and conduct the generalization experi-
ments on 12-Scenes. We will not compare the parameters
since it has been illustrated in the original paper.

For EXP1, we freeze the task-shared parameters trained
on 12-Scenes, and add an additional regression layer for
each scene of 7-Scenes to predict the scene coordinates.
As shown in Tab. 2, despite generalizing to a new scene,
OFVL-MS34/50† still outperforms HSCNet and FDANet
by 0.82%/1.93% and 1.95%/3.06% in terms of 5cm-5◦

accuracy. Compared with state-of-the-art method VS-Net,
OFVL-MS34/50† achieve lower positional and rotational
errors. Besides, it is astonishing to find the localization ac-
curacy of OFVL-MS34/50† in certain scenes (e.g. pump-
kin, redkitchen, and stairs) is higher than that of OFVL-
MS34/50, indicating that low-level geometric information
learned from 12-Scenes is beneficial for better scene pars-
ing of 7-Scenes.

For EXP2, we freeze the task-shared parameters trained
on 7-Scenes, and add an additional regression layer for
each scene of 12-Scenes to predict the scene coordinates.
As shown in Tab. 3, it is interesting to find that OFVL-
MS18/34/50† achieve better localization performance com-
pared with OFVL-MS18/34/50 in many scenes, further in-
dicating that the related tasks benefit from the shared in-
formative features. Furthermore, OFVL-MS families yield
poor localization accuracy when generalizing to 5b scene,
resulting in inferior performance overall.

4. LIVL Dataset
As shown in Fig. 3, the dataset collection equipment con-

tains a mobile chassis, a RealSense D435 camera, and a
VLP-16 laser radar. LIVL dataset records RGB-D images
and corresponding camera poses of four different indoor en-
vironments, as shown in Fig. 4.

Specifically, we utilize the ROS system to record RGB
images and aligned depth images with corresponding times-
tamp T1 through subscribing /camera/color/image raw
and /camera/aligned depth to color/image raw topics
provided by RealSense D435 camera. Furthermore, we ob-
tain point clouds with timestamp T2 through subscribing



Chess Fire Heads Office Pumpkin Redkitchen Stairs Average

SCoordNet [14]
Err. 0.019,0.63 0.023,0.91 0.018,1.26 0.026, 0.73 0.039,1.09 0.039,1.18 0.037,1.06 0.029,0.98
Acc. — — — — — — — —

HSCNet [6]
Err. 0.02,0.7 0.02,0.9 0.01,0.9 0.03,0.8 0.04,1.0 0.04,1.2 0.03,0.8 0.03,0.9
Acc. 97.5 96.7 100.0 86.5 59.9 65.5 87.5 84.8

FDANet [12]
Err. 0.018,0.64 0.018,0.73 0.013,1.07 0.026,0.75 0.036,0.91 0.034,1.03 0.041,1.14 0.026,0.89
Acc. 95.70 96.10 99.20 88.08 65.65 78.32 62.80 83.69

VS-Net [4]
Err. 0.015,0.5 0.019,0.8 0.012,0.7 0.021,0.6 0.037,1.0 0.036,1.1 0.028,0.8 0.024,0.8
Acc. — — — — — — — —

OFVL-MS18
Err. 0.021,0.67 0.018,0.67 0.010,0.56 0.030,0.83 0.033,0.96 0.035,1.02 0.031,0.89 0.025,0.80
Acc. 96.20 97.55 98.90 81.725 67.15 75.06 79.80 85.20

OFVL-MS34
Err. 0.019,0.63 0.017,0.65 0.008,0.53 0.027,0.74 0.031,0.93 0.032,1.01 0.027,0.69 0.023,0.74
Acc. 97.40 96.60 100.0 85.58 67.50 77.14 87.40 87.37

OFVL-MS50
Err. 0.015,0.50 0.015,0.59 0.008,0.56 0.023,0.63 0.030,0.86 0.031,0.99 0.026,0.76 0.021,0.69
Acc. 97.10 99.40 100.0 89.53 68.80 81.48 84.70 88.72

OFVL-MS18† Err. 0.019,0.64 0.021,0.85 0.011,0.70 0.036,0.96 0.033,0.96 0.037,1.13 0.046,1.30 0.029,0.93
Acc. 95.90 89.35 93.60 77.075 63.90 69.68 53.60 77.59

OFVL-MS34† Err. 0.018,0.67 0.019,0.67 0.009,0.67 0.026,0.69 0.033,0.92 0.030,0.97 0.028,0.67 0.023,0.75
Acc. 97.95 95.95 98.90 85.42 68.15 77.92 75.80 85.62

OFVL-MS50† Err. 0.017,0.60 0.018,0.70 0.010,0.67 0.024,0.64 0.028,0.78 0.031,0.99 0.022,0.59 0.021,0.71
Acc. 96.65 97.00 97.10 86.53 70.90 79.10 80.00 86.75

Table 2: Incermental experiments. † indicates using the task-shared parameters trained on 12-Scenes to conduct general-
ization experiments on 7-Scenes.

Kitchen-1 Living-1 Bed Kitchen-2 Living-2 Luke Gates 362 Gates 381 Lounge Manolis Floor5a Floor5b Average

DSAC++ [2]
Err.
Acc.

— — — — — — — — — — — — —
100 100 99.5 99.5 100 99.5 100 96.8 95.1 96.4 83.7 95.0 96.8

HSCNet [6]
Err.
Acc.

0.008.0.4 0.011,0.4 0.009,0.4 0.007,0.3 0.010,0.4 0.012,0.5 0.010,0.4 0.012,0.6 0.014,0.5 0.011,0.5 0.012,0.5 0.015,0.5 0.011,0.5
100 100 100 100 100 96.3 100 99.1 100 100 98.8 97.3 99.3

FDANet [12]
Err.
Acc.

0.009,0.30 0.011,0.26 0.013,0.46 0.007,0.27 0.014,0.26 0.019,0.61 0.011,0.38 0.011,0.43 0.015,0.37 0.015,0.35 0.020,0.34 0.026,0.41 0.014,0.37
100 100 100 100 100 99.2 100 100 100 100 100 95.7 99.6

OFVL-MS18
Err.
Acc.

0.012,0.39 0.012,0.32 0.012,0.62 0.010,0.39 0.012,0.45 0.015,0.62 0.012,0.54 0.016,0.67 0.012,0.37 0.012,0.53 0.014,0.43 0.016,0.44 0.013,0.48
100 100 100 100 100 94.7 100 97.2 99.7 99.7 99.8 93.1 98.7

OFVL-MS34
Err.
Acc.

0.003,0.17 0.007,0.21 0.014,0.40 0.004,0.17 0.005,0.17 0.009,0.32 0.007,0.28 0.009,0.35 0.007,0.16 0.007,0.28 0.007,0.25 0.009,0.22 0.007,0.25
100 100 100 100 100 99.20 100 100 100 100 100 100 99.9

OFVL-MS50
Err.
Acc.

0.007,0.27 0.006,0.13 0.013,0.43 0.005,0.22 0.005,0.22 0.013,0.48 0.008,0.31 0.011,0.45 0.008,0.24 0.008,0.33 0.010,0.33 0.012,0.29 0.008,0.30
100 100 100 100 100 96.0 100 99.6 100 100 100 97.8 99.5

OFVL-MS18† Err.
Acc.

0.005,0.29 0.004,0.16 0.018,0.87 0.003,0.16 0.005,0.20 0.016,0.55 0.009,0.37 0.012,0.48 0.006,0.22 0.006,0.31 0.013,0.51 0.021,0.48 0.009,0.38
100 100 84.8 100 100 98.4 100 99.9 100 100 98.5 79.5 96.7

OFVL-MS34† Err.
Acc.

0.005,0.16 0.003,0.11 0.012,0.54 0.003,0.14 0.005,0.18 0.011,0.43 0.014,0.37 0.015,0.52 0.006,0.18 0.005,0.22 0.013,0.52 0.019,0.43 0.009,0.31
100 100 100 100 100 100 100 99.7 100 100 98.6 68.9 97.3

OFVL-MS50† Err.
Acc.

0.005,0.18 0.005,0.19 0.009,0.35 0.003,0.15 0.005,0.18 0.013,0.43 0.009,0.36 0.013,0.36 0.009,0.30 0.006,0.24 0.010,0.29 0.017,0.54 0.008,0.29
100 96.8 100 100 100 99.8 100 100 96.9 100 100 85.7 98.3

Table 3: Incermental experiments. † indicates using the task-shared parameters trained on 7-Scenes to conduct generaliza-
tion experiments on 12-Scenes.

/velodyne points topic provided by VLP-16 laser radar.
Then, we generate final RGB-D images and corresponding
point clouds through aligning T1 and T2. Ultimately, We
utilize the LiDAR-based SLAM system A-LOAM [13] to
compute the ground truth pose.

For each scene, four sequences are recorded, in which
three sequences are used for training and one sequence for
testing. K544: a room spanning about 12× 9m2 with 3109

images for training and 1112 images for testing. Floor5: a
hall spanning about 12 × 5m2 with 2694 images for train-
ing and 869 images for testing. Parking lot1: a parking lot
spanning about 8× 6m2 with 2294 images for training and
661 images for testing. Parking lot2: a parking lot span-
ning about 8× 8m2 with 2415 images for training and 875
images for testing. This dataset is challenging for visual lo-
calization since it contains substantial lighting, motion blur,
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Figure 4: Our new public dataset LIVL for visual lo-
calization. The dataset comprises four scenes, including
K544, Floor5, Parking lot1, and Parking lot2. The blue lines
denote training trajectories and the red lines denote test tra-
jectories.
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Figure 5: The visualization of the predicted uncertainty.
OFVL-MS predicts large uncertainty at the object bound-
aries where the deep discontinuity occurs.

sparse texture, and glass structures.
We utilize 2 GPUs when training OFVL-MS families on

each scene of LIVL dataset. We employ the Adamw solver
for optimization without weight decay. The initial learning
rate is set to 8× 10−4 with cosine annealing. Furthermore,
we do not employ data augmentation and set total iterations
as 200k with a batch size of 4.

5. Additional Qualitative Results

5.1. Uncertainty Visualization

The uncertainty modeling quantifies the noise coming
from data and model [5]. As shown in Fig. 5, we visual-
ize the predicted uncertainty maps, in which the large un-
certainty occurs at the object boundaries due to the depth
discontinuity, proving that uncertainty modeling is crucial

Heads

Chess

Fire

Stairs

Figure 6: The visualization of camera trajectories. The
blue lines denote the ground truth trajectories, and the red
lines denote the predicted trajectories.
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Figure 7: The visualization of point clouds. We obtain
neater point clouds after filtering out the points with uncer-
tainties larger than λ.

for OFVL-MS to realize precise scene parsing.

5.2. Trajectories Visualization

As shown in Fig. 6, we visualize the predicted camera
trajectories and ground truth to conduct qualitative analysis.
It can be observed that the predicted trajectories are very
close to the ground truth trajectories, which demonstrates
the strong ability of OFVL-MS to realize accurate visual
localization.

5.3. Scene Point Clouds Visualization

Following KFNet, OFVL-MS families learn the uncer-
tainties of the predicted scene coordinates to quantify the
errors coming from measurement noise and process noise.
To validate the effectiveness of learning uncertainties, we
filter the point clouds whose uncertainties are larger than λ
and visualize the filtered point clouds, as shown in Fig. 7.
We can observe that OFVL-MS suppresses the noise and
generates neater point clouds with the uncertainties increas-
ing.
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Figure 8: The cumulative pose errors distribution of all scenes in 7-Scenes dataset.

5.4. Cumulative Pose Errors Distribution

As shown in Fig. 8, we illustrate the cumulative pose er-
ror distribution of all scenes in 7-Scenes dataset. We can
observe that OFVL-MS families achieve the best localiza-
tion accuracy in almost all scenes. Besides, FDANet [12]
and OFVL-MS18 realize inferior performance because of
the weak capability to differentiate similar image patches
caused by limited receptive fields since they both utilize
ResNet18 as backbone.

6. Limitations
In this work, we confine the scenes to indoor environ-

ments as joint training for many scenes necessitates par-
ticularly exact monitoring signals of ground truth scene
coordinates; otherwise, shared parameters would not be
throughly optimized. The obtained ground truth scene co-

ordinates in outdoor scenes contain a significant number of
outliers, making training challenging, especially for joint
training. As shown in Tab. 4, OFVL-MS34 achieves cer-
tain inferior performance compared with typical structure-
based methods and SCoRe based methods. We argue that
this phenomenon is induced by inadequate optimization for
the task-shared parameters. In our future work, we hope to
include outdoor scenes in our work.
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Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013. 1

[2] Eric Brachmann and Carsten Rother. Learning less is more-
6d camera localization via 3d surface regression. In Proceed-



Cambridge Great Court K.College Old Hospital Shop Facade St M.Church Average

DSAC++ [2] 0.40, 0.20 0.18, 0.30 0.20, 0.30 0.06, 0.30 0.13, 0.40 0.19, 0.30

Active Search[9] - 0.42, 0.55 0.44, 1.01 0.12, 0.40 0.19, 0.54 0.29, 0.63

SCoordNet [14] 0.43, 0.20 0.16, 1.29 0.18, 0.29 0.05, 0.34 0.12. 0.36 0.13, 0.32

VS-Net [4] 0.22, 0.10 0.16, 0.20 0.16, 0.30 0.06, 0.30 0.08, 0.30 0.14, 0.24

HSC-Net [6] 0.28, 0.20 0.18, 0.30 0.19, 0.30 0.06, 0.30 0.09, 0.30 0.16, 0.28

PixLoc [8] 0.30, 0.14 0.14, 0.24 0.16, 0.32 0.05, 0.23 0.10, 0.34 0.15, 0.25

HLoc[7] 0.76, 0.30 0.34, 0.40 0.43, 0.60 0.09, 0.40 0.16, 0.50 0.36, 0.31

HLoc+SuperGlue [7] 0.10, 0.07 0.07, 0.11 0.13, 0.24 0.03, 0.14 0.04, 0.12 0.07, 0.14

OFVL-MS34 0.46, 0.31 0.28, 0.53 0.25, 0.49 0.16, 0.56 0.24, 0.61 0.28, 0.50

Table 4: The median translation and rotation errors of different localization methods on Cambridge dataset.

ings of the IEEE conference on computer vision and pattern
recognition, pages 4654–4662, 2018. 2, 3, 6

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1

[4] Zhaoyang Huang, Han Zhou, Yijin Li, Bangbang Yang, Yan
Xu, Xiaowei Zhou, Hujun Bao, Guofeng Zhang, and Hong-
sheng Li. Vs-net: Voting with segmentation for visual lo-
calization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6101–
6111, 2021. 3, 6

[5] Alex Kendall and Roberto Cipolla. Modelling uncertainty in
deep learning for camera relocalization. In 2016 IEEE in-
ternational conference on Robotics and Automation (ICRA),
pages 4762–4769. IEEE, 2016. 4

[6] Xiaotian Li, Shuzhe Wang, Yi Zhao, Jakob Verbeek, and
Juho Kannala. Hierarchical scene coordinate classification
and regression for visual localization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11983–11992, 2020. 1, 2, 3, 6

[7] Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and
Marcin Dymczyk. From coarse to fine: Robust hierarchical
localization at large scale. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 12716–12725, 2019. 6

[8] Paul-Edouard Sarlin, Ajaykumar Unagar, Mans Larsson,
Hugo Germain, Carl Toft, Viktor Larsson, Marc Pollefeys,
Vincent Lepetit, Lars Hammarstrand, Fredrik Kahl, et al.
Back to the feature: Learning robust camera localization
from pixels to pose. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
3247–3257, 2021. 6

[9] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Efficient
& effective prioritized matching for large-scale image-based
localization. IEEE transactions on pattern analysis and ma-
chine intelligence, 39(9):1744–1756, 2016. 6

[10] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram
Izadi, Antonio Criminisi, and Andrew Fitzgibbon. Scene co-

ordinate regression forests for camera relocalization in rgb-d
images. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2930–2937, 2013. 1

[11] Julien Valentin, Angela Dai, Matthias Nießner, Pushmeet
Kohli, Philip Torr, Shahram Izadi, and Cem Keskin. Learn-
ing to navigate the energy landscape. In 2016 Fourth In-
ternational Conference on 3D Vision (3DV), pages 323–332.
IEEE, 2016. 1

[12] Tao Xie, Kun Dai, Ke Wang, Ruifeng Li, Jiahe Wang,
Xinyue Tang, and Lijun Zhao. A deep feature aggrega-
tion network for accurate indoor camera localization. IEEE
Robotics and Automation Letters, 7(2):3687–3694, 2022. 3,
5

[13] Ji Zhang and Sanjiv Singh. Visual-lidar odometry and map-
ping: Low-drift, robust, and fast. In 2015 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 2174–2181. IEEE, 2015. 3

[14] Lei Zhou, Zixin Luo, Tianwei Shen, Jiahui Zhang, Mingmin
Zhen, Yao Yao, Tian Fang, and Long Quan. Kfnet: Learn-
ing temporal camera relocalization using kalman filtering. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 4919–4928, 2020. 3,
6


